chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫(xiě)文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

圖解BERT預(yù)訓(xùn)練模型!

深度學(xué)習(xí)自然語(yǔ)言處理 ? 來(lái)源:Datawhale ? 作者:張賢 ? 2020-11-24 10:08 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

一、前言

2018 年是機(jī)器學(xué)習(xí)模型處理文本(或者更準(zhǔn)確地說(shuō),自然語(yǔ)言處理或 NLP)的轉(zhuǎn)折點(diǎn)。我們對(duì)這些方面的理解正在迅速發(fā)展:如何最好地表示單詞和句子,從而最好地捕捉基本語(yǔ)義和關(guān)系?此外,NLP 社區(qū)已經(jīng)發(fā)布了非常強(qiáng)大的組件,你可以免費(fèi)下載,并在自己的模型和 pipeline 中使用(今年可以說(shuō)是 NLP 的 ImageNet 時(shí)刻,這句話指的是多年前類似的發(fā)展也加速了 機(jī)器學(xué)習(xí)在計(jì)算機(jī)視覺(jué)任務(wù)中的應(yīng)用)。

ULM-FiT 與 Cookie Monster(餅干怪獸)無(wú)關(guān)。但我想不出別的了...

BERT的發(fā)布是這個(gè)領(lǐng)域發(fā)展的最新的里程碑之一,這個(gè)事件標(biāo)志著NLP 新時(shí)代的開(kāi)始。BERT模型打破了基于語(yǔ)言處理的任務(wù)的幾個(gè)記錄。在 BERT 的論文發(fā)布后不久,這個(gè)團(tuán)隊(duì)還公開(kāi)了模型的代碼,并提供了模型的下載版本,這些模型已經(jīng)在大規(guī)模數(shù)據(jù)集上進(jìn)行了預(yù)訓(xùn)練。這是一個(gè)重大的發(fā)展,因?yàn)樗沟萌魏我粋€(gè)構(gòu)建構(gòu)建機(jī)器學(xué)習(xí)模型來(lái)處理語(yǔ)言的人,都可以將這個(gè)強(qiáng)大的功能作為一個(gè)現(xiàn)成的組件來(lái)使用,從而節(jié)省了從零開(kāi)始訓(xùn)練語(yǔ)言處理模型所需要的時(shí)間、精力、知識(shí)和資源。

BERT 開(kāi)發(fā)的兩個(gè)步驟:第 1 步,你可以下載預(yù)訓(xùn)練好的模型(這個(gè)模型是在無(wú)標(biāo)注的數(shù)據(jù)上訓(xùn)練的)。然后在第 2 步只需要關(guān)心模型微調(diào)即可。

你需要注意一些事情,才能理解 BERT 是什么。因此,在介紹模型本身涉及的概念之前,讓我們先看看如何使用 BERT。

二、示例:句子分類

使用 BERT 最直接的方法就是對(duì)一個(gè)句子進(jìn)行分類。這個(gè)模型如下所示:

為了訓(xùn)練這樣一個(gè)模型,你主要需要訓(xùn)練分類器(上圖中的 Classifier),在訓(xùn)練過(guò)程中 幾乎不用改動(dòng)BERT模型。這個(gè)訓(xùn)練過(guò)程稱為微調(diào),它起源于Semi-supervised Sequence Learning 和 ULMFiT。

由于我們?cè)谟懻摲诸惼?,這屬于機(jī)器學(xué)習(xí)的監(jiān)督學(xué)習(xí)領(lǐng)域。這意味著我們需要一個(gè)帶有標(biāo)簽的數(shù)據(jù)集來(lái)訓(xùn)練這樣一個(gè)模型。例如,在下面這個(gè)垃圾郵件分類器的例子中,帶有標(biāo)簽的數(shù)據(jù)集包括一個(gè)郵件內(nèi)容列表和對(duì)應(yīng)的標(biāo)簽(每個(gè)郵件是“垃圾郵件”或者“非垃圾郵件”)。

其他一些例子包括:

1)語(yǔ)義分析

輸入:電影或者產(chǎn)品的評(píng)價(jià)。輸出:判斷這個(gè)評(píng)價(jià)是正面的還是負(fù)面的。

數(shù)據(jù)集示例:SST (https://nlp.stanford.edu/sentiment)

2)Fact-checking

輸入:一個(gè)句子。輸出:這個(gè)句子是不是一個(gè)斷言

參考視頻:https://www.youtube.com/watch?v=ddf0lgPCoSo

三、模型架構(gòu)

現(xiàn)在你已經(jīng)通過(guò)上面的例子,了解了如何使用 BERT,接下來(lái)讓我們更深入地了解一下它的工作原理。

論文里介紹了兩種不同模型大小的 BERT:

BERT BASE - 與 OpenAI 的 Transformer 大小相當(dāng),以便比較性能

BERT LARGE - 一個(gè)非常巨大的模型,它取得了最先進(jìn)的結(jié)果

BERT 基本上是一個(gè)訓(xùn)練好的 Transformer 的 decoder 的棧。關(guān)于 Transformer 的介紹,可以閱讀之前的文章《 圖解Transformer(完整版)!》,這里主要介紹 Transformer 模型,這是 BERT 中的一個(gè)基本概念。此外,我們還會(huì)介紹其他一些概念。

2 種不同大小規(guī)模的 BERT 模型都有大量的 Encoder 層(論文里把這些層稱為 Transformer Blocks)- BASE 版本由 12 層 Encoder,Large 版本有 20 層 Encoder。同時(shí),這些 BERT 模型也有更大的前饋神經(jīng)網(wǎng)絡(luò)(分別有 768 個(gè)和 1024 個(gè)隱藏層單元)和更多的 attention heads(分別有 12 個(gè)和 16 個(gè)),超過(guò)了原始 Transformer 論文中的默認(rèn)配置參數(shù)(原論文中有 6 個(gè) Encoder 層, 512 個(gè)隱藏層單元和 8 個(gè) attention heads)。

四、模型輸入

第一個(gè)輸入的 token 是特殊的 [CLS],它 的含義是分類(class的縮寫(xiě))。

就像 Transformer 中普通的 Encoder 一樣,BERT 將一串單詞作為輸入,這些單詞在 Encoder 的棧中不斷向上流動(dòng)。每一層都會(huì)經(jīng)過(guò) Self Attention 層,并通過(guò)一個(gè)前饋神經(jīng)網(wǎng)絡(luò),然后將結(jié)果傳給下一個(gè) Encoder。

在模型架構(gòu)方面,到目前為止,和 Transformer 是相同的(除了模型大小,因?yàn)檫@是我們可以改變的參數(shù))。我們會(huì)在下面看到,BERT 和 Transformer 在模型的輸出上有一些不同。

五、模型輸出

每個(gè)位置輸出一個(gè)大小為 hidden_size(在 BERT Base 中是 768)的向量。對(duì)于上面提到的句子分類的例子,我們只關(guān)注第一個(gè)位置的輸出(輸入是 [CLS] 的那個(gè)位置)。

這個(gè)輸出的向量現(xiàn)在可以作為后面分類器的輸入。論文里用單層神經(jīng)網(wǎng)絡(luò)作為分類器,取得了很好的效果。

如果你有更多標(biāo)簽(例如你是一個(gè)電子郵件服務(wù),需要將郵件標(biāo)記為 “垃圾郵件”、“非垃圾郵件”、“社交”、“推廣”),你只需要調(diào)整分類器的神經(jīng)網(wǎng)絡(luò),增加輸出的神經(jīng)元個(gè)數(shù),然后經(jīng)過(guò) softmax 即可。

六、與卷積神經(jīng)網(wǎng)絡(luò)進(jìn)行對(duì)比

對(duì)于那些有計(jì)算機(jī)視覺(jué)背景的人來(lái)說(shuō),這個(gè)向量傳遞過(guò)程,會(huì)讓人聯(lián)想到 VGGNet 等網(wǎng)絡(luò)的卷積部分,和網(wǎng)絡(luò)最后的全連接分類部分之間的過(guò)程。

七、詞嵌入(Embedding)的新時(shí)代

上面提到的這些新發(fā)展帶來(lái)了文本編碼方式的新轉(zhuǎn)變。到目前為止,詞嵌入一直是 NLP 模型處理語(yǔ)言的主要表示方法。像 Word2Vec 和 Glove 這樣的方法已經(jīng)被廣泛應(yīng)用于此類任務(wù)。在我們討論新的方法之前,讓我們回顧一下它們是如何應(yīng)用的。

7.1 回顧詞嵌入

單詞不能直接輸入機(jī)器學(xué)習(xí)模型,而需要某種數(shù)值表示形式,以便模型能夠在計(jì)算中使用。通過(guò) Word2Vec,我們可以使用一個(gè)向量(一組數(shù)字)來(lái)恰當(dāng)?shù)乇硎締卧~,并捕捉單詞的語(yǔ)義以及單詞和單詞之間的關(guān)系(例如,判斷單詞是否相似或者相反,或者像 "Stockholm" 和 "Sweden" 這樣的一對(duì)詞,與 "Cairo" 和 "Egypt"這一對(duì)詞,是否有同樣的關(guān)系)以及句法、語(yǔ)法關(guān)系(例如,"had" 和 "has" 之間的關(guān)系與 "was" 和 "is" 之間的關(guān)系相同)。

人們很快意識(shí)到,相比于在小規(guī)模數(shù)據(jù)集上和模型一起訓(xùn)練詞嵌入,更好的一種做法是,在大規(guī)模文本數(shù)據(jù)上預(yù)訓(xùn)練好詞嵌入,然后拿來(lái)使用。因此,我們可以下載由 Word2Vec 和 GloVe 預(yù)訓(xùn)練好的單詞列表,及其詞嵌入。下面是單詞 "stick" 的 Glove 詞嵌入向量的例子(詞嵌入向量長(zhǎng)度是 200)。

單詞 "stick" 的 Glove 詞嵌入 - 一個(gè)由200個(gè)浮點(diǎn)數(shù)組成的向量(四舍五入到小數(shù)點(diǎn)后兩位)。

由于這些向量都很長(zhǎng),且全部是數(shù)字,所以在文章中我使用以下基本形狀來(lái)表示向量:

7.2 ELMo:語(yǔ)境問(wèn)題

如果我們使用 Glove 的詞嵌入表示方法,那么不管上下文是什么,單詞 "stick" 都只表示為同一個(gè)向量。一些研究人員指出,像 "stick" 這樣的詞有多種含義。為什么不能根據(jù)它使用的上下文來(lái)學(xué)習(xí)對(duì)應(yīng)的詞嵌入呢?這樣既能捕捉單詞的語(yǔ)義信息,又能捕捉上下文的語(yǔ)義信息。于是,語(yǔ)境化的詞嵌入模型應(yīng)運(yùn)而生。

語(yǔ)境化的詞嵌入,可以根據(jù)單詞在句子語(yǔ)境中的含義,賦予不同的詞嵌入。你可以查看這個(gè)視頻 RIP Robin Williams(https://zhuanlan.zhihu.com/RIP Robin Williams)

ELMo 沒(méi)有對(duì)每個(gè)單詞使用固定的詞嵌入,而是在為每個(gè)詞分配詞嵌入之前,查看整個(gè)句子,融合上下文信息。它使用在特定任務(wù)上經(jīng)過(guò)訓(xùn)練的雙向 LSTM 來(lái)創(chuàng)建這些詞嵌入。

ELMo 在語(yǔ)境化的預(yù)訓(xùn)練這條道路上邁出了重要的一步。ELMo LSTM 會(huì)在一個(gè)大規(guī)模的數(shù)據(jù)集上進(jìn)行訓(xùn)練,然后我們可以將它作為其他語(yǔ)言處理模型的一個(gè)部分,來(lái)處理自然語(yǔ)言任務(wù)。

那么 ELMo 的秘密是什么呢?

ELMo 通過(guò)訓(xùn)練,預(yù)測(cè)單詞序列中的下一個(gè)詞,從而獲得了語(yǔ)言理解能力,這項(xiàng)任務(wù)被稱為語(yǔ)言建模。要實(shí)現(xiàn) ELMo 很方便,因?yàn)槲覀冇写罅课谋緮?shù)據(jù),模型可以從這些數(shù)據(jù)中學(xué)習(xí),而不需要額外的標(biāo)簽。

ELMo 預(yù)訓(xùn)練過(guò)程的其中一個(gè)步驟:以 "Let’s stick to" 作為輸入,預(yù)測(cè)下一個(gè)最有可能的單詞。這是一個(gè)語(yǔ)言建模任務(wù)。當(dāng)我們?cè)诖笠?guī)模數(shù)據(jù)集上訓(xùn)練時(shí),模型開(kāi)始學(xué)習(xí)語(yǔ)言的模式。例如,在 "hang" 這樣的詞之后,模型將會(huì)賦予 "out" 更高的概率(因?yàn)?"hang out" 是一個(gè)詞組),而不是 "camera"。

在上圖中,我們可以看到 ELMo 頭部上方展示了 LSTM 的每一步的隱藏層狀態(tài)向量。在這個(gè)預(yù)訓(xùn)練過(guò)程完成后,這些隱藏層狀態(tài)在詞嵌入過(guò)程中派上用場(chǎng)。

ELMo 通過(guò)將隱藏層狀態(tài)(以及初始化的詞嵌入)以某種方式(向量拼接之后加權(quán)求和)結(jié)合在一起,實(shí)現(xiàn)了帶有語(yǔ)境化的詞嵌入。

7.3 ULM-FiT:NLP 領(lǐng)域的遷移學(xué)習(xí)

ULM-FiT 提出了一些方法來(lái)有效地利用模型在預(yù)訓(xùn)練期間學(xué)習(xí)到的東西 - 這些東西不僅僅是詞嵌入,還有語(yǔ)境化的詞嵌入。ULM-FiT 提出了一個(gè)語(yǔ)言模型和一套流程,可以有效地為各種任務(wù)微調(diào)這個(gè)語(yǔ)言模型。

現(xiàn)在,NLP 可能終于找到了好的方法,可以像計(jì)算機(jī)視覺(jué)那樣進(jìn)行遷移學(xué)習(xí)了。

7.4 Transformer:超越 LSTM

Transformer 論文和代碼的發(fā)布,以及它在機(jī)器翻譯等任務(wù)上取得的成果,開(kāi)始讓人們認(rèn)為它是 LSTM 的替代品。這是因?yàn)?Transformer 可以比 LSTM 更好地處理長(zhǎng)期依賴。

Transformer 的 Encoder-Decoder 結(jié)構(gòu)使得它非常適合機(jī)器翻譯。但你怎么才能用它來(lái)做文本分類呢?你怎么才能使用它來(lái)預(yù)訓(xùn)練一個(gè)語(yǔ)言模型,并能夠在其他任務(wù)上進(jìn)行微調(diào)(下游任務(wù)是指那些能夠利用預(yù)訓(xùn)練模型的監(jiān)督學(xué)習(xí)任務(wù))?

7.5 OpenAI Transformer:預(yù)訓(xùn)練一個(gè) Transformer Decoder 來(lái)進(jìn)行語(yǔ)言建模

事實(shí)證明,我們不需要一個(gè)完整的 Transformer 來(lái)進(jìn)行遷移學(xué)習(xí)和微調(diào)。我們只需要 Transformer 的 Decoder 就可以了。Decoder 是一個(gè)很好的選擇,用它來(lái)做語(yǔ)言建模(預(yù)測(cè)下一個(gè)詞)是很自然的,因?yàn)樗梢云帘魏髞?lái)的詞 。當(dāng)你使用它進(jìn)行逐詞翻譯時(shí),這是個(gè)很有用的特性。

OpenAI Transformer 是由 Transformer 的 Decoder 堆疊而成的

這個(gè)模型包括 12 個(gè) Decoder 層。因?yàn)樵谶@種設(shè)計(jì)中沒(méi)有 Encoder,這些 Decoder 層不會(huì)像普通的 Transformer 中的 Decoder 層那樣有 Encoder-Decoder Attention 子層。不過(guò),它仍然會(huì)有 Self Attention 層(這些層使用了 mask,因此不會(huì)看到句子后來(lái)的 token)。

有了這個(gè)結(jié)構(gòu),我們可以繼續(xù)在同樣的語(yǔ)言建模任務(wù)上訓(xùn)練這個(gè)模型:使用大規(guī)模未標(biāo)記的數(shù)據(jù)來(lái)預(yù)測(cè)下一個(gè)詞。只需要把 7000 本書(shū)的文字扔給模型 ,然后讓它學(xué)習(xí)。書(shū)籍非常適合這種任務(wù),因?yàn)闀?shū)籍的數(shù)據(jù)可以使得模型學(xué)習(xí)到相關(guān)聯(lián)的信息。如果你使用 tweets 或者文章來(lái)訓(xùn)練,模型是得不到這些信息的。

上圖表示:OpenAI Transformer 在 7000 本書(shū)的組成的數(shù)據(jù)集中預(yù)測(cè)下一個(gè)單詞。

7.6 下游任務(wù)的遷移學(xué)習(xí)

現(xiàn)在,OpenAI Transformer 已經(jīng)經(jīng)過(guò)了預(yù)訓(xùn)練,它的網(wǎng)絡(luò)層經(jīng)過(guò)調(diào)整,可以很好地處理文本語(yǔ)言,我們可以開(kāi)始使用它來(lái)處理下游任務(wù)。讓我們先看下句子分類任務(wù)(把電子郵件分類為 ”垃圾郵件“ 或者 ”非垃圾郵件“):

OpenAI 的論文列出了一些列輸入變換方法,來(lái)處理不同任務(wù)類型的輸入。下面這張圖片來(lái)源于論文,展示了執(zhí)行不同任務(wù)的模型結(jié)構(gòu)和對(duì)應(yīng)輸入變換。這些都是非常很巧妙的做法。

八、BERT:從 Decoder 到 Encoder

OpenAI Transformer 為我們提供了一個(gè)基于 Transformer 的可以微調(diào)的預(yù)訓(xùn)練網(wǎng)絡(luò)。但是在把 LSTM 換成 Transformer 的過(guò)程中,有些東西丟失了。ELMo 的語(yǔ)言模型是雙向的,但 OpenAI Transformer 只訓(xùn)練了一個(gè)前向的語(yǔ)言模型。我們是否可以構(gòu)建一個(gè)基于 Transformer 的語(yǔ)言模型,它既向前看,又向后看(用技術(shù)術(shù)語(yǔ)來(lái)說(shuō) - 融合上文和下文的信息)。

8.1 Masked Language Model(MLM 語(yǔ)言模型)

那么如何才能像 LSTM 那樣,融合上文和下文的雙向信息呢?

一種直觀的想法是使用 Transformer 的 Encoder。但是 Encoder 的 Self Attention 層,每個(gè) token 會(huì)把大部分注意力集中到自己身上,那么這樣將容易預(yù)測(cè)到每個(gè) token,模型學(xué)不到有用的信息。BERT 提出使用 mask,把需要預(yù)測(cè)的詞屏蔽掉。

下面這段風(fēng)趣的對(duì)話是博客原文的。

BERT 說(shuō),“我們要用 Transformer 的 Encoder”。

Ernie 說(shuō),”這沒(méi)什么用,因?yàn)槊總€(gè) token 都會(huì)在多層的雙向上下文中看到自己“。

BERT 自信地說(shuō),”我們會(huì)使用 mask“。

BERT 在語(yǔ)言建模任務(wù)中,巧妙地屏蔽了輸入中 15% 的單詞,并讓模型預(yù)測(cè)這些屏蔽位置的單詞。

找到合適的任務(wù)來(lái)訓(xùn)練一個(gè) Transformer 的 Encoder 是一個(gè)復(fù)雜的問(wèn)題,BERT 通過(guò)使用早期文獻(xiàn)中的 "masked language model" 概念(在這里被稱為完形填空)來(lái)解決這個(gè)問(wèn)題。

除了屏蔽輸入中 15% 的單詞外, BERT 還混合使用了其他的一些技巧,來(lái)改進(jìn)模型的微調(diào)方式。例如,有時(shí)它會(huì)隨機(jī)地用一個(gè)詞替換另一個(gè)詞,然后讓模型預(yù)測(cè)這個(gè)位置原來(lái)的實(shí)際單詞。

8.2 兩個(gè)句子的任務(wù)

如果你回顧 OpenAI Transformer 在處理不同任務(wù)時(shí)所做的輸入變換,你會(huì)注意到有些任務(wù)需要模型對(duì)兩個(gè)句子的信息做一些處理(例如,判斷它們是不是同一句話的不同解釋。將一個(gè)維基百科條目作為輸入,再將一個(gè)相關(guān)的問(wèn)題作為另一個(gè)輸入,模型判斷是否可以回答這個(gè)問(wèn)題)。

為了讓 BERT 更好地處理多個(gè)句子之間的關(guān)系,預(yù)訓(xùn)練過(guò)程還包括一個(gè)額外的任務(wù):給出兩個(gè)句子(A 和 B),判斷 B 是否是 A 后面的相鄰句子。

BERT 預(yù)訓(xùn)練的第 2 個(gè)任務(wù)是兩個(gè)句子的分類任務(wù)。在上圖中,tokenization 這一步被簡(jiǎn)化了,因?yàn)?BERT 實(shí)際上使用了 WordPieces 作為 token,而不是使用單詞本身。在 WordPiece 中,有些詞會(huì)被拆分成更小的部分。

8.3 BERT 在不同任務(wù)上的應(yīng)用

BERT 的論文展示了 BERT 在多種任務(wù)上的應(yīng)用。

8.4 將 BERT 用于特征提取

使用 BERT 并不是只有微調(diào)這一種方法。就像 ELMo 一樣,你可以使用預(yù)訓(xùn)練的 BERT 來(lái)創(chuàng)建語(yǔ)境化的詞嵌入。然后你可以把這些詞嵌入用到你現(xiàn)有的模型中。論文里也提到,這種方法在命名實(shí)體識(shí)別任務(wù)中的效果,接近于微調(diào) BERT 模型的效果。

那么哪種向量最適合作為上下文詞嵌入?我認(rèn)為這取決于任務(wù)。論文里驗(yàn)證了 6 種選擇(與微調(diào)后的 96.4 分的模型相比):

8.5 如何使用 BERT

嘗試 BERT 的最佳方式是通過(guò)托管在 Google Colab 上的BERT FineTuning with Cloud TPUs。如果你之前從來(lái)沒(méi)有使用過(guò) Cloud TPU,那這也是一個(gè)很好的嘗試開(kāi)端,因?yàn)?BERT 代碼可以運(yùn)行在 TPU、CPUGPU。

下一步是查看BERT 倉(cāng)庫(kù)中的代碼:

模型是在modeling.py(class BertModel)中定義的,和普通的 Transformer encoder 完全相同。

run_classifier.py是微調(diào)網(wǎng)絡(luò)的一個(gè)示例。它還構(gòu)建了監(jiān)督模型分類層。如果你想構(gòu)建自己的分類器,請(qǐng)查看這個(gè)文件中的 create_model() 方法。

可以下載一些預(yù)訓(xùn)練好的模型。這些模型包括 BERT Base、BERT Large,以及英語(yǔ)、中文和包括 102 種語(yǔ)言的多語(yǔ)言模型,這些模型都是在維基百科的數(shù)據(jù)上進(jìn)行訓(xùn)練的。

BERT 不會(huì)將單詞作為 token。相反,它關(guān)注的是 WordPiece。tokenization.py就是 tokenizer,它會(huì)將你的單詞轉(zhuǎn)換為適合 BERT 的 wordPiece。

責(zé)任編輯:lq

聲明:本文內(nèi)容及配圖由入駐作者撰寫(xiě)或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 機(jī)器學(xué)習(xí)

    關(guān)注

    66

    文章

    8550

    瀏覽量

    136802
  • 自然語(yǔ)言處理
    +關(guān)注

    關(guān)注

    1

    文章

    630

    瀏覽量

    14658
  • nlp
    nlp
    +關(guān)注

    關(guān)注

    1

    文章

    491

    瀏覽量

    23267

原文標(biāo)題:【NLP專欄】圖解 BERT 預(yù)訓(xùn)練模型!

文章出處:【微信號(hào):zenRRan,微信公眾號(hào):深度學(xué)習(xí)自然語(yǔ)言處理】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    什么是大模型,智能體...?大模型100問(wèn),快速全面了解!

    ,LLM)是大模型中最主要的一類,專門(mén)用于處理和生成人類語(yǔ)言。大語(yǔ)言模型通過(guò)“閱讀”海量的文本數(shù)據(jù)(如書(shū)籍、網(wǎng)頁(yè)、文章等)進(jìn)行預(yù)訓(xùn)練,學(xué)會(huì)語(yǔ)言的模式、知識(shí)和上下文
    的頭像 發(fā)表于 02-02 16:36 ?830次閱讀
    什么是大<b class='flag-5'>模型</b>,智能體...?大<b class='flag-5'>模型</b>100問(wèn),快速全面了解!

    在Ubuntu20.04系統(tǒng)中訓(xùn)練神經(jīng)網(wǎng)絡(luò)模型的一些經(jīng)驗(yàn)

    本帖欲分享在Ubuntu20.04系統(tǒng)中訓(xùn)練神經(jīng)網(wǎng)絡(luò)模型的一些經(jīng)驗(yàn)。我們采用jupyter notebook作為開(kāi)發(fā)IDE,以TensorFlow2為訓(xùn)練框架,目標(biāo)是訓(xùn)練一個(gè)手寫(xiě)數(shù)字識(shí)
    發(fā)表于 10-22 07:03

    基于大規(guī)模人類操作數(shù)據(jù)預(yù)訓(xùn)練的VLA模型H-RDT

    近年來(lái),機(jī)器人操作領(lǐng)域的VLA模型普遍基于跨本體機(jī)器人數(shù)據(jù)集預(yù)訓(xùn)練,這類方法存在兩大局限:不同機(jī)器人本體和動(dòng)作空間的差異導(dǎo)致統(tǒng)一訓(xùn)練困難;現(xiàn)有大規(guī)模機(jī)器人演示數(shù)據(jù)稀缺且質(zhì)量參差不齊。得
    的頭像 發(fā)表于 08-21 09:56 ?1046次閱讀
    基于大規(guī)模人類操作數(shù)據(jù)<b class='flag-5'>預(yù)</b><b class='flag-5'>訓(xùn)練</b>的VLA<b class='flag-5'>模型</b>H-RDT

    ai_cube訓(xùn)練模型最后部署失敗是什么原因?

    ai_cube訓(xùn)練模型最后部署失敗是什么原因?文件保存路徑里也沒(méi)有中文 查看AICube/AI_Cube.log,看看報(bào)什么錯(cuò)?
    發(fā)表于 07-30 08:15

    make sence成的XML文件能上傳到自助訓(xùn)練模型上嗎?

    make sence成的XML文件能上傳到自助訓(xùn)練模型上嗎
    發(fā)表于 06-23 07:38

    模型時(shí)代的深度學(xué)習(xí)框架

    量是約為 25.63M,在ImageNet1K數(shù)據(jù)集上,使用單張消費(fèi)類顯卡 RTX-4090只需大約35~40個(gè)小時(shí) ,即可完成ResNet50模型預(yù)訓(xùn)練。在 大模型時(shí)代 ,由于大
    的頭像 發(fā)表于 04-25 11:43 ?810次閱讀
    大<b class='flag-5'>模型</b>時(shí)代的深度學(xué)習(xí)框架

    恩智浦eIQ Time Series Studio工具使用教程之模型訓(xùn)練

    大家好,eIQ Time SeriesStudio又和大家見(jiàn)面啦!本章為大家?guī)?lái)工具核心部分-模型訓(xùn)練。
    的頭像 發(fā)表于 03-25 15:25 ?1676次閱讀
    恩智浦eIQ Time Series Studio工具使用教程之<b class='flag-5'>模型</b><b class='flag-5'>訓(xùn)練</b>

    請(qǐng)問(wèn)如何在imx8mplus上部署和運(yùn)行YOLOv5訓(xùn)練模型

    我正在從事 imx8mplus yocto 項(xiàng)目。我已經(jīng)在自定義數(shù)據(jù)集上的 YOLOv5 上訓(xùn)練了對(duì)象檢測(cè)模型。它在 ubuntu 電腦上運(yùn)行良好?,F(xiàn)在我想在我的 imx8mplus 板上運(yùn)行該模型
    發(fā)表于 03-25 07:23

    用PaddleNLP為GPT-2模型制作FineWeb二進(jìn)制預(yù)訓(xùn)練數(shù)據(jù)集

    作者:算力魔方創(chuàng)始人/英特爾創(chuàng)新大使劉力 《用PaddleNLP在4060單卡上實(shí)踐大模型預(yù)訓(xùn)練技術(shù)》發(fā)布后收到讀者熱烈反響,很多讀者要求進(jìn)一步講解更多的技術(shù)細(xì)節(jié)。本文主要針對(duì)大語(yǔ)言模型
    的頭像 發(fā)表于 03-21 18:24 ?4226次閱讀
    用PaddleNLP為GPT-2<b class='flag-5'>模型</b>制作FineWeb二進(jìn)制<b class='flag-5'>預(yù)</b><b class='flag-5'>訓(xùn)練</b>數(shù)據(jù)集

    數(shù)據(jù)標(biāo)注服務(wù)—奠定大模型訓(xùn)練的數(shù)據(jù)基石

    數(shù)據(jù)標(biāo)注是大模型訓(xùn)練過(guò)程中不可或缺的基礎(chǔ)環(huán)節(jié),其質(zhì)量直接影響著模型的性能表現(xiàn)。在大模型訓(xùn)練中,數(shù)據(jù)標(biāo)注承擔(dān)著將原始數(shù)據(jù)轉(zhuǎn)化為機(jī)器可理解、可學(xué)
    的頭像 發(fā)表于 03-21 10:30 ?3134次閱讀

    訓(xùn)練好的ai模型導(dǎo)入cubemx不成功怎么處理?

    訓(xùn)練好的ai模型導(dǎo)入cubemx不成功咋辦,試了好幾個(gè)模型壓縮了也不行,ram占用過(guò)大,有無(wú)解決方案?
    發(fā)表于 03-11 07:18

    是否可以輸入隨機(jī)數(shù)據(jù)集來(lái)生成INT8訓(xùn)練后量化模型

    無(wú)法確定是否可以輸入隨機(jī)數(shù)據(jù)集來(lái)生成 INT8 訓(xùn)練后量化模型
    發(fā)表于 03-06 06:45

    從Open Model Zoo下載的FastSeg大型公共預(yù)訓(xùn)練模型,無(wú)法導(dǎo)入名稱是怎么回事?

    從 Open Model Zoo 下載的 FastSeg 大型公共預(yù)訓(xùn)練模型。 運(yùn)行 converter.py 以將 FastSeg 大型模型轉(zhuǎn)換為中間表示 (IR): pyth
    發(fā)表于 03-05 07:22

    使用OpenVINO?訓(xùn)練擴(kuò)展對(duì)水平文本檢測(cè)模型進(jìn)行微調(diào),收到錯(cuò)誤信息是怎么回事?

    已針對(duì)水平文本檢測(cè)模型運(yùn)行OpenVINO?訓(xùn)練擴(kuò)展中的 微調(diào) 步驟,并收到錯(cuò)誤消息: RuntimeError: Failed to find annotation files
    發(fā)表于 03-05 06:48

    小白學(xué)大模型訓(xùn)練大語(yǔ)言模型的深度指南

    在當(dāng)今人工智能飛速發(fā)展的時(shí)代,大型語(yǔ)言模型(LLMs)正以其強(qiáng)大的語(yǔ)言理解和生成能力,改變著我們的生活和工作方式。在最近的一項(xiàng)研究中,科學(xué)家們?yōu)榱松钊肓私馊绾胃咝У?b class='flag-5'>訓(xùn)練大型語(yǔ)言模型,進(jìn)行了超過(guò)
    的頭像 發(fā)表于 03-03 11:51 ?1393次閱讀
    小白學(xué)大<b class='flag-5'>模型</b>:<b class='flag-5'>訓(xùn)練</b>大語(yǔ)言<b class='flag-5'>模型</b>的深度指南