chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

圖像處理的顏色空間及其OpenCV實現(xiàn)

智能感知與物聯(lián)網(wǎng)技術(shù)研究所 ? 來源:通信信號處理研究所 ? 作者:通信信號處理研究 ? 2020-12-25 11:36 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

對圖像的顏色空間做了一個概念性的介紹,并通過代碼的方式可視化了每種顏色空間的每個通道所表示的意義。

文章內(nèi)容包括:

什么是顏色空間?

顏色空間有哪些類別?

如何在OpenCV中實現(xiàn)?

什么是顏色空間?

顏色是一種連續(xù)的現(xiàn)象,它意味著有無數(shù)種顏色。但是,人類的眼睛和感知能力是有限的。所以,為了識別這些顏色,我們需要一種媒介或這些顏色的表示,這種顏色的表示被稱為色彩空間。在技術(shù)術(shù)語中,一個顏色模型或顏色空間是一個特定的3-D坐標系統(tǒng)以及該系統(tǒng)中的一個子空間,其中每一種顏色都由一個單點表示。

有哪些顏色空間的類型?

目前主要有五種類型的顏色模型。但是,我將只寫一些常見的(RGB、HSV和HSL)。

RGB(Red Green Blue)

HSL(Hue Saturation Lightness)

HSV(Hue Saturation Value)

YUV(Luminance, blue–luminance, red–luminance)

CMYK(Cyan, Magenta, Yellow, Key)

RGB顏色空間:

RGB顏色空間是三維坐標系中紅、綠、藍坐標所表示的著名顏色空間之一。在更專業(yè)的術(shù)語中,RGB將顏色描述為由三個部分組成的元組。每個部分都可以取0到255之間的值,其中元組(0,0,0)表示黑色,元組(255,255,255)表示白色。元組的第0、第1和第2個部分分別表示紅、綠、藍的分量。

RGB顏色空間的Python實現(xiàn):

這里我們導入了必要的庫,cv2用于顏色空間轉(zhuǎn)換,NumPy用于數(shù)組操作,Matplotlib用于顯示圖像,os用于訪問圖像目錄,tqdm用于顯示加載欄。

hsl_img=cv2.cvtColor(X[0],cv2.COLOR_BGR2HLS)####CONVERTINGBGRCOLORSPACEINTOHSLCOLORSPACE####
hsl_img_1=hsl_img.copy()
hsl_img_2=hsl_img.copy()
hsl_img_3=hsl_img.copy()
hsl_img_1[:,:,1]=0####HUE-->ZERO####
hsl_img_1[:,:,2]=0
hsl_img_2[:,:,0]=0####SATURATION-->ZERO####
hsl_img_2[:,:,2]=0
hsl_img_3[:,:,0]=0####LIGHTNESS-->ZERO####
hsl_img_3[:,:,1]=0

設(shè)置兩個空列表Z和X,分別用于存儲帶有各自圖像的標簽,然后指定圖像大小和路徑目錄。在這之后,我定義了兩個函數(shù),用于返回flower類型(assign_lable)和訪問每個圖像、讀取和調(diào)整其大小(make_train_data)。

Z,X=[],[]
IMG_SIZE=150
FLOWER_SUNFLOWER_DIR='../input/flowers-recognition/flowers/flowers/sunflower'

defassign_label(img,flower_type):
returnflower_type

defmake_train_data(flower_type,DIR):
forimgintqdm(os.listdir(DIR)):
label=assign_label(img,flower_type)
path=os.path.join(DIR,img)
img=cv2.imread(path,cv2.IMREAD_COLOR)
img=cv2.resize(img,(IMG_SIZE,IMG_SIZE))#Resizingtheimage

加載圖像,然后在OpenCV以BGR格式讀取圖像時將BGR顏色空間轉(zhuǎn)換為RGB顏色空間,但Maplotlib使用RGB格式來顯示圖像。這就是為什么我們需要轉(zhuǎn)換顏色空間后,讀取圖像為RGB。

然后對固定圖像進行三份拷貝,并將每份拷貝的任何雙色通道設(shè)為零,分別用于訪問紅、綠、藍通道。如果你讓第0個顏色通道都是0那么你只會得到藍色通道。

make_train_data('Sunflower',FLOWER_SUNFLOWER_DIR)#####LoadingSunflowerData
fix_img=cv2.cvtColor(X[0],cv2.COLOR_BGR2RGB)###########CONVERTINGBGRCOLORSPACEINTORGBCOLORSPACE#########
new_img_1=fix_img.copy()
new_img_2=fix_img.copy()
new_img_3=fix_img.copy()
new_img_1[:,:,0]=0#makingRchannelzero####ForBLUEchannel#####
new_img_1[:,:,1]=0#makingGchannelzero
new_img_2[:,:,1]=0####ForREDcolorChannel####
new_img_2[:,:,2]=0
new_img_3[:,:,0]=0###ForGREENChannel####
new_img_3[:,:,2]=0

顯示圖像:

f,axes=plt.subplots(1,3,figsize=(15,15))
list=[new_img_1,new_img_2,new_img_3]
i=0
foraxinaxes:
ax.imshow(list[i])
i+=1

HSL顏色空間:

HSL的一般含義是色調(diào)、飽和度和明度。你可以將HSL以圓柱體的形式可視化,如圖2(a)所示。圍繞圓柱體的是不同的顏色,比如綠色、黃色、紅色等等(我們真正想要的顏色)。飽和度是指顏色的多少,而明度是指顏色有多暗或多亮。正如你所看到的,圓柱體的頂部全是白色,底部全是黑色。

圖2:HSL顏色空間

HSL顏色空間的Python實現(xiàn):

使用OpenCV函數(shù)**cvtColor()**將BGR顏色空間轉(zhuǎn)換為HSL顏色空間,在這里我們需要傳遞圖像,以及從哪個顏色空間到哪個顏色空間我們想要改變圖像。然后再復制并使兩個顏色通道為零,以便分別顯示每個顏色通道。

hsl_img=cv2.cvtColor(X[0],cv2.COLOR_BGR2HLS)####CONVERTINGBGRCOLORSPACEINTOHSLCOLORSPACE####
hsl_img_1=hsl_img.copy()
hsl_img_2=hsl_img.copy()
hsl_img_3=hsl_img.copy()
hsl_img_1[:,:,1]=0####HUE-->ZERO####
hsl_img_1[:,:,2]=0
hsl_img_2[:,:,0]=0####SATURATION-->ZERO####
hsl_img_2[:,:,2]=0
hsl_img_3[:,:,0]=0####LIGHTNESS-->ZERO####
hsl_img_3[:,:,1]=0

現(xiàn)在顯示三個不同的顏色通道→

f,axes=plt.subplots(1,3,figsize=(15,15))
list=[hsl_img_1,hsl_img_2,hsl_img_3]
i=0
foraxinaxes:
ax.imshow(list[i])
i+=1

HSV顏色空間:

HSV這個名字來自于顏色模型的三個坐標,即色相、飽和度和值。它也是一個圓柱形的顏色模型,圓柱體的半徑表示飽和度,垂直軸表示值,角度表示色調(diào)。對于觀察者,色調(diào)是占主導地位的,飽和度是混合到色調(diào)中的白光的數(shù)量,value是chrome的強度,value較低顏色變得更加類似于黑色,value越高,顏色變得更加像顏色本身。通過改變這些參數(shù),我們可以生成不同的顏色。

圖3:HSV顏色空間

HSV顏色空間的Python實現(xiàn):

使用cvtColor()函數(shù)將色彩空間轉(zhuǎn)換為HSV色彩空間。然后再復制并使兩個通道置為零,以便分別顯示每個通道。

hsv_img=cv2.cvtColor(X[0],cv2.COLOR_BGR2HSV)
hsv_img_1=hsv_img.copy()
hsv_img_2=hsv_img.copy()
hsv_img_3=hsv_img.copy()
hsv_img_1[:,:,1]=0#HUE-->ZERO
hsv_img_1[:,:,2]=0
hsv_img_2[:,:,0]=0#SATURATION-->ZERO
hsv_img_2[:,:,2]=0
hsv_img_3[:,:,0]=0#VALUE-->ZERO
hsv_img_3[:,:,1]=0

單獨顯示每個顏色通道:

原文標題:解析丨圖像處理基礎(chǔ):顏色空間及其OpenCV實現(xiàn)

文章出處:【微信公眾號:通信信號處理研究所】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

責任編輯:haq

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 圖像處理
    +關(guān)注

    關(guān)注

    29

    文章

    1342

    瀏覽量

    59445

原文標題:解析丨圖像處理基礎(chǔ):顏色空間及其OpenCV實現(xiàn)

文章出處:【微信號:tyutcsplab,微信公眾號:智能感知與物聯(lián)網(wǎng)技術(shù)研究所】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點推薦

    沒有專利的opencv-python 版本

    功能 圖像基礎(chǔ)操作 讀取/保存(imread/imwrite)、縮放/旋轉(zhuǎn)、裁剪、通道分離/合并 圖像處理 灰度轉(zhuǎn)換、閾值分割、形態(tài)學操作(腐蝕/膨脹)、模糊(高斯/中值模糊)、銳化 特征檢測
    發(fā)表于 12-13 12:37

    零成本鋼鐵俠手套!樹莓派+OpenCV 秒變手勢遙控器!

    大家好,這是一個樹莓派和OpenCV的連載專題。使用樹莓派與OpenCV實現(xiàn)姿態(tài)估計和面部特征點追蹤使用樹莓派與OpenCV實現(xiàn)面部和運動追
    的頭像 發(fā)表于 08-16 16:16 ?1230次閱讀
    零成本鋼鐵俠手套!樹莓派+<b class='flag-5'>OpenCV</b> 秒變手勢遙控器!

    如何使用樹莓派與OpenCV實現(xiàn)面部和運動追蹤的云臺系統(tǒng)?

    大家好,這是一個樹莓派和OpenCV的連載專題。使用樹莓派與OpenCV實現(xiàn)姿態(tài)估計和面部特征點追蹤使用樹莓派與OpenCV實現(xiàn)面部和運動追
    的頭像 發(fā)表于 08-14 17:45 ?1421次閱讀
    如何使用樹莓派與<b class='flag-5'>OpenCV</b><b class='flag-5'>實現(xiàn)</b>面部和運動追蹤的云臺系統(tǒng)?

    如何使用樹莓派+OpenCV實現(xiàn)姿態(tài)估計和面部特征點追蹤?

    大家好,這是一個樹莓派和OpenCV的連載專題。使用樹莓派與OpenCV實現(xiàn)姿態(tài)估計和面部特征點追蹤使用樹莓派與OpenCV實現(xiàn)面部和運動追
    的頭像 發(fā)表于 08-13 17:44 ?1275次閱讀
    如何使用樹莓派+<b class='flag-5'>OpenCV</b><b class='flag-5'>實現(xiàn)</b>姿態(tài)估計和面部特征點追蹤?

    【GM-3568JHF開發(fā)板免費體驗】OpenCV開發(fā)環(huán)境安裝和計數(shù)程序開發(fā)

    查看ip SSH鏈接 遠程登錄賬號和密碼是linaro 二、安裝Pip管理工具 Sudo apt-get install python3-pip 三、安裝cv2環(huán)境 cv2支持圖像處理(如濾波、邊緣
    發(fā)表于 08-09 13:30

    【GM-3568JHF開發(fā)板免費體驗】OpenCV 視頻目標跟蹤 ( CamShift)

    和 CamShift 是兩種經(jīng)典且常用的算法。本文將詳細講解這兩種算法的原理、實現(xiàn)步驟以及如何在 OpenCV 中使用它們。 CamShift 算法 1.1 算法原理 CamShift(Continuously
    發(fā)表于 08-09 13:19

    【Milk-V Duo S 開發(fā)板免費體驗】SDK編譯、人臉檢測、OpenCV測試

    -mobile-test ./opencv-mobile-test 生成 200x200 尺寸的 out.jpg 圖像,即實現(xiàn)圖片壓縮。 該測試工程可結(jié)合物體識別模型,實現(xiàn)輸入
    發(fā)表于 07-11 13:48

    itop-3568開發(fā)板機器視覺opencv開發(fā)手冊-圖像繪制-畫線

    參數(shù)為待繪制的圖像; pt1 為線段的起點; pt2 為線段的終點; color 為形狀的顏色,用元組表示,例如(255,0,0)表示; thickness 為線條的粗細,-1 為填充模式,默認值為 1
    發(fā)表于 06-04 10:38

    基于LockAI視覺識別模塊:C++尋找色塊

    ,便于設(shè)置閾值。 1.2 色塊識別的流程 獲取圖像。 將圖像從 BGR 轉(zhuǎn)換為 HSV 顏色空間。 創(chuàng)建二值掩碼,篩選出符合顏色范圍的像素。
    發(fā)表于 05-12 14:55

    基于LockAI視覺識別模塊:C++使用圖像的統(tǒng)計信息

    中感興趣的區(qū)域,通常用于局部分析或處理。 提取 ROI 的目的是減少數(shù)據(jù)量并專注于特定區(qū)域,從而提高處理效率。 1.2 顏色空間轉(zhuǎn)換 不同的顏色
    發(fā)表于 05-08 10:31

    基于LockAI視覺識別模塊:C++圖像的基本運算

    圖像處理中,理解圖像的基本操作是掌握計算機視覺技術(shù)的關(guān)鍵。本文章將介紹 基于LockAI視覺識別模塊下OpenCV圖像的基本運算方法,
    發(fā)表于 05-06 16:56

    基于LockAI視覺識別模塊:C++圖像的基本運算

    圖像處理中,理解圖像的基本操作是掌握計算機視覺技術(shù)的關(guān)鍵。本文章將介紹基于LockAI視覺識別模塊下OpenCV圖像的基本運算方法,包括
    的頭像 發(fā)表于 05-06 16:20 ?684次閱讀
    基于LockAI視覺識別模塊:C++<b class='flag-5'>圖像</b>的基本運算

    基于LockAI視覺識別模塊:C++圖像采集例程

    本文主要演示如何使用LockAI視覺識別模塊進行視頻流的讀取,同時使用Edit模塊進行圖像傳輸?;A(chǔ)知識講解1.1OpenCV簡介OpenCV(OpenSourceComputerVisionLibra
    的頭像 發(fā)表于 04-30 18:23 ?735次閱讀
    基于LockAI視覺識別模塊:C++<b class='flag-5'>圖像</b>采集例程

    基于LockAI視覺識別模塊:C++圖像采集例程

    OpenCV 實現(xiàn)攝像頭模塊的視頻流讀取與圖像傳輸。核心步驟包括: 初始化攝像頭并設(shè)置分辨率; 打開攝像頭并逐幀捕獲圖像; 使用 Edit 模塊進行
    發(fā)表于 04-30 10:52

    使用OpenCV保存從攝像頭捕獲的視頻時更改顏色輸出視頻收到警告怎么解決?

    保存了從配備 OpenCV* 的攝像頭捕獲的視頻。 生成更改的顏色輸出視頻。 收到警告:[ INFO:0] global .。/opencv/modules/core/src/utils
    發(fā)表于 03-05 07:20