chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

使用NVIDIA TensorRT優(yōu)化T5和GPT-2

星星科技指導(dǎo)員 ? 來源:NVIDIA ? 作者:NVIDIA ? 2022-03-31 17:25 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

這個transformer 體系結(jié)構(gòu)完全改變了(雙關(guān)語)自然語言處理( NLP )的領(lǐng)域。近年來,在 transformer 構(gòu)建塊 BERT 、 GPT 和 T5 上構(gòu)建了許多新穎的網(wǎng)絡(luò)體系結(jié)構(gòu)。隨著品種的增加,這些型號的尺寸也迅速增加。

雖然較大的神經(jīng)語言模型通常會產(chǎn)生更好的結(jié)果,但將它們部署到生產(chǎn)環(huán)境中會帶來嚴重的挑戰(zhàn),尤其是對于在線應(yīng)用程序,在這些應(yīng)用程序中,幾十毫秒的額外延遲可能會對用戶體驗產(chǎn)生顯著的負面影響。

使用最新的TensorRT8.2 ,我們優(yōu)化了 T5 和 GPT-2 模型,以實現(xiàn)實時推理。您可以將 T5 或 GPT-2 模型轉(zhuǎn)換為 TensorRT 引擎,然后將此引擎用作推理工作流中原始 PyTorch 模型的插件替換。與 PyTorch GPU 推理相比,此優(yōu)化導(dǎo)致延遲減少 3-6 倍,與 PyTorch CPU 推理相比,延遲減少 9-21 倍。

在這篇文章中,我們將向您詳細介紹如何實現(xiàn)相同的延遲減少,使用我們最新發(fā)布的基于 Hugging Face transformers 的示例腳本和筆記本,使用 GPT-2 進行開放式文本生成,使用 T5 進行翻譯和摘要。

T5 和 GPT-2 簡介

在本節(jié)中,我們將簡要介紹 T5 和 GPT-2 模型。

T5 用于回答問題、總結(jié)、翻譯和分類

T5或文本到文本傳輸 transformer 是谷歌最近創(chuàng)建的一種體系結(jié)構(gòu)。它將所有自然語言處理( NLP )任務(wù)重新構(gòu)造為統(tǒng)一的文本到文本格式,其中輸入和輸出始終是文本字符串。 T5 的體系結(jié)構(gòu)允許將相同的模型、損失函數(shù)和超參數(shù)應(yīng)用于任何 NLP 任務(wù),如機器翻譯、文檔摘要、問答和分類任務(wù),如情感分析。

T5 模式的靈感來源于遷移學(xué)習在 NLP 中產(chǎn)生了最先進的結(jié)果。遷移學(xué)習背后的原理是,基于大量可用的未經(jīng)訓(xùn)練的數(shù)據(jù)和自我監(jiān)督任務(wù)的模型可以在較小的任務(wù)特定標記數(shù)據(jù)集上針對特定任務(wù)進行微調(diào)。事實證明,這些模型比從頭開始針對特定任務(wù)數(shù)據(jù)集訓(xùn)練的模型具有更好的結(jié)果。

基于遷移學(xué)習的概念, Google 在用統(tǒng)一的文本到文本轉(zhuǎn)換器探索遷移學(xué)習的局限性中提出了 T5 模型。在本文中,他們還介紹了龐大的干凈爬網(wǎng)語料庫( C4 )數(shù)據(jù)集。在該數(shù)據(jù)集上預(yù)訓(xùn)練的 T5 模型在許多下游 NLP 任務(wù)上實現(xiàn)了最先進的結(jié)果。已發(fā)布的預(yù)訓(xùn)練 T5 車型的參數(shù)范圍高達 3B 和 11B 。

GPT-2 用于生成優(yōu)秀的類人文本

生成性預(yù)訓(xùn)練 transformer 2 (GPT-2)是 OpenAI 最初提出的一種自回歸無監(jiān)督語言模型。它由 transformer 解碼器塊構(gòu)建,并在非常大的文本語料庫上進行訓(xùn)練,以預(yù)測段落中的下一個單詞。它生成優(yōu)秀的類人文本。更大的 GPT-2 模型,最大參數(shù)達到 15 億,通常能寫出更好、更連貫的文本。

使用 TensorRT 部署 T5 和 GPT-2

使用 TensorRT 8.2 ,我們通過構(gòu)建并使用 TensorRT 發(fā)動機作為原始 PyTorch 模型的替代品,優(yōu)化了 T5 和 GPT-2 模型。我們將帶您瀏覽scripts和 Jupyternotebooks,并重點介紹基于擁抱面部變形金剛的重要內(nèi)容。有關(guān)更多信息,請參閱示例腳本和筆記本以獲取詳細的分步執(zhí)行指南。

設(shè)置

最方便的開始方式是使用 Docker 容器,它為實驗提供了一個隔離、獨立和可復(fù)制的環(huán)境。

構(gòu)建并啟動 TensorRT 容器:

pYYBAGJFc9SAPvxgAAAaKW2vWGI162.png

這些命令啟動 Docker 容器和 JupyterLab 。在 web 瀏覽器中打開 JupyterLab 界面:pYYBAGJFdAKAcbUvAAAEMDAJOjM560.png在 JupyterLab 中,要打開終端窗口,請選擇?File?、?New?、?Terminal?。編譯并安裝 TensorRT OSS 包:

poYBAGJFdA2AQncNAAALSmQMGn0122.png

現(xiàn)在,您已經(jīng)準備好繼續(xù)使用模型進行實驗。在下面的順序中,我們將演示 T5 模型的步驟。下面的代碼塊并不意味著可以復(fù)制粘貼運行,而是引導(dǎo)您完成整個過程。為了便于復(fù)制,請參閱 GitHub 存儲庫上的notebooks。

在高層次上,使用 TensorRT 優(yōu)化用于部署的擁抱面 T5 和 GPT-2 模型是一個三步過程:

從 HuggingFace 模型動物園下載模型。

將模型轉(zhuǎn)換為優(yōu)化的 TensorRT 執(zhí)行引擎。

使用 TensorRT 引擎進行推理。

使用生成的引擎作為 HuggingFace 推理工作流中原始 PyTorch 模型的插件替換。

從 HuggingFace 模型動物園下載模型

首先,從 HuggingFace 模型中心下載原始的 Hugging Face PyTorch T5 模型及其關(guān)聯(lián)的標記器。

poYBAGJFdCeAbgptAAANxtLgEjs368.png

然后,您可以將此模型用于各種 NLP 任務(wù),例如,從英語翻譯為德語:

pYYBAGJFdC-ATa1bAAAU9hCPQ6k530.png

TensorRT 8.2 支持 GPT-2 至“ xl ”版本( 1.5B 參數(shù))和 T5 至 11B 參數(shù),這些參數(shù)可在 HuggingFace model zoo 上公開獲得。根據(jù) GPU 內(nèi)存可用性,也可支持較大型號。

將模型轉(zhuǎn)換為優(yōu)化的 TensorRT 執(zhí)行引擎。

在將模型轉(zhuǎn)換為 TensorRT 引擎之前,請將 PyTorch 模型轉(zhuǎn)換為中間通用格式。 ONNX 是機器學(xué)習深度學(xué)習模型的開放格式。它使您能夠?qū)?TensorFlow 、 PyTorch 、 MATLAB 、 Caffe 和 Keras 等不同框架中的深度學(xué)習和機器學(xué)習模型轉(zhuǎn)換為單一的統(tǒng)一格式。

轉(zhuǎn)換為 ONNX

對于 T5 型號,使用實用功能分別轉(zhuǎn)換編碼器和解碼器。

pYYBAGJFdDiACUfkAAAhAI8eZnI041.png

轉(zhuǎn)換為 TensorRT

現(xiàn)在,您已經(jīng)準備好解析 T5 ONNX 編碼器和解碼器,并將它們轉(zhuǎn)換為優(yōu)化的 TensorRT 引擎。由于 TensorRT 執(zhí)行了許多優(yōu)化,例如融合操作、消除轉(zhuǎn)置操作和內(nèi)核自動調(diào)優(yōu),以在目標 GPU 體系結(jié)構(gòu)上找到性能最佳的內(nèi)核,因此此轉(zhuǎn)換過程可能需要一些時間。

pYYBAGJFdE6AQLHtAAAcENHunE8781.png

使用 TensorRT 引擎進行推理

最后,您現(xiàn)在有了一個針對 T5 模型的優(yōu)化 TensorRT 引擎,可以進行推斷。

pYYBAGJFdGyATjkzAAAfAAkkvFE954.png

類似地,對于 GPT-2 模型,您可以按照相同的過程生成 TensorRT 引擎。優(yōu)化的 TensorRT 引擎可作為 HuggingFace 推理工作流中原始 PyTorch 模型的插件替代品。

TensorRT transformer 優(yōu)化細節(jié)

基于轉(zhuǎn)換器的模型是 transformer 編碼器或解碼器塊的堆棧。編碼器(解碼器)塊具有相同的結(jié)構(gòu)和參數(shù)數(shù)量。 T5 由 transformer 編碼器和解碼器的堆棧組成,而 GPT-2 僅由 transformer 解碼器塊組成(圖 1 )。

t5-architecture.png

圖 1a 。 T5 架構(gòu)

poYBAGJFc5-AeDgfAABnQisiZW4320.png

圖 1b 。 GPT-2 體系結(jié)構(gòu)

每個 transformer 塊,也稱為自我注意塊,通過使用完全連接的層將輸入投影到三個不同的子空間,稱為查詢( Q )、鍵( K )和值( V ),由三個投影組成。然后將這些矩陣轉(zhuǎn)換為 QT和 KT用于計算標準化點積注意值,然后與 V 組合T生成最終輸出(圖 2 )。

pYYBAGJFc6GAKbmGAAC5J-rjuz4450.png

圖 2 。自我注意塊

TensorRT 通過逐點層融合優(yōu)化自我注意塊:

還原與電源操作相融合(用于圖層模板和剩余添加圖層)。

電子秤與 softmax 融合在一起。

GEMM 與 ReLU / GELU 激活融合。

此外, TensorRT 還優(yōu)化了推理網(wǎng)絡(luò):

消除轉(zhuǎn)置操作。

將三個 KQV 投影融合為一個 GEMM 。

當指定 FP16 模式時,控制逐層精度以保持精度,同時運行 FP16 中計算最密集的運算。

TensorRT 對 PyTorch CPU 和 GPU 基準

通過 TensorRT 進行的優(yōu)化,我們看到 PyTorch GPU 推理的加速比高達 3-6 倍,而 PyTorch CPU 推理的加速比高達 9-21 倍。

圖 3 顯示了批量為 1 的 T5-3B 模型的推理結(jié)果,該模型用于將短短語從英語翻譯成德語。 A100 GPU 上的 TensorRT 引擎與在雙插槽 Intel Platinum 8380 CPU 上運行的 PyTorch 相比,延遲減少了 21 倍。

poYBAGJFc6KAct-cAABCQhQEBKM339.png

圖 3 。 A100 GPU 上的 T5-3B 模型推斷比較 TensorRT 提供的延遲比 PyTorch CPU 推斷小 21 倍。

CPU :英特爾白金 8380 , 2 個插槽。
GPU:NVIDIA A100 PCI Express 80GB 。軟件: PyTorch 1.9 , TensorRT 8.2.0 EA 。
任務(wù):“將英語翻譯成德語:這很好?!?/p>

結(jié)論

在這篇文章中,我們向您介紹了如何將擁抱臉 PyTorch T5 和 GPT-2 模型轉(zhuǎn)換為優(yōu)化的 TensorRT 推理引擎。 TensorRT 推理機用作原始 HuggingFace T5 和 GPT-2 PyTorch 模型的替代品,可提供高達 21x CPU 的推理加速比。要為您的模型實現(xiàn)此加速,從 TensorRT 8.2 開始今天的學(xué)習.

關(guān)于作者

About Vinh Nguyen是一位深度學(xué)習的工程師和數(shù)據(jù)科學(xué)家,發(fā)表了 50 多篇科學(xué)文章,引文超過 2500 篇。在 NVIDIA ,他的工作涉及廣泛的深度學(xué)習和人工智能應(yīng)用,包括語音、語言和視覺處理以及推薦系統(tǒng)。

About Nikhil Srihari是 NVIDIA 的深入學(xué)習軟件技術(shù)營銷工程師。他在自然語言處理、計算機視覺和語音處理領(lǐng)域擁有廣泛的深度學(xué)習和機器學(xué)習應(yīng)用經(jīng)驗。 Nikhil 曾在富達投資公司和 Amazon 工作。他的教育背景包括布法羅大學(xué)的計算機科學(xué)碩士學(xué)位和印度蘇拉斯卡爾卡納塔克邦國家理工學(xué)院的學(xué)士學(xué)位。

About Parth Chadha是 NVIDIA 的深度學(xué)習軟件工程師。他在 TensorRT 上工作,這是一個高性能的深度學(xué)習推理 SDK 。 Parth 在卡內(nèi)基梅隆大學(xué)獲得電氣和計算機工程碩士學(xué)位,主要研究機器學(xué)習和并行計算機體系結(jié)構(gòu)。

About Charles Chen20 歲時在加州大學(xué)圣地亞哥分校獲得計算機科學(xué)碩士學(xué)位后, Charles Chen 專注于為尖端人工智能框架、發(fā)展中國家的計算機教育和人機交互做出貢獻。在 NVIDIA , Charles 是一名深度學(xué)習軟件工程師,致力于 TensorRT ,一款高性能的深度學(xué)習推理 SDK 。

About Joohoon Lee領(lǐng)導(dǎo) NVIDIA 的汽車深度學(xué)習解決方案架構(gòu)師團隊。他專注于將深度學(xué)習研究轉(zhuǎn)化為用于生產(chǎn)部署的真實世界自主駕駛軟件。他的團隊使汽車客戶能夠使用英偉達驅(qū)動平臺進行 DNN 培訓(xùn)、微調(diào)、優(yōu)化和部署。在加入 NVIDIA 之前,他曾擔任 GPU 軟件架構(gòu)師,負責加速 DNN 算法。 Joohoon 在卡內(nèi)基梅隆大學(xué)獲得電氣和計算機工程學(xué)士和碩士學(xué)位。

About Jay Rodge是 NVIDIA 的產(chǎn)品營銷經(jīng)理,負責深入學(xué)習和推理產(chǎn)品,推動產(chǎn)品發(fā)布和產(chǎn)品營銷計劃。杰伊在芝加哥伊利諾伊理工學(xué)院獲得計算機科學(xué)碩士學(xué)位,主攻計算機視覺和自然語言處理。在 NVIDIA 之前,杰伊是寶馬集團的人工智能研究實習生,為寶馬最大的制造廠使用計算機視覺解決問題。

審核編輯:郭婷

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • cpu
    cpu
    +關(guān)注

    關(guān)注

    68

    文章

    11226

    瀏覽量

    223176
  • NVIDIA
    +關(guān)注

    關(guān)注

    14

    文章

    5513

    瀏覽量

    109182
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點推薦

    NVIDIA TensorRT LLM 1.0推理框架正式上線

    TensorRT LLM 作為 NVIDIA 為大規(guī)模 LLM 推理打造的推理框架,核心目標是突破 NVIDIA 平臺上的推理性能瓶頸。為實現(xiàn)這一目標,其構(gòu)建了多維度的核心實現(xiàn)路徑:一方面,針對需
    的頭像 發(fā)表于 10-21 11:04 ?820次閱讀

    【RA4M2-SENSOR】3、使用GPT定時器-PWM輸出

    的信息 */ R_GPT_InfoGet(&g_timer2_ctrl, &info); /* 獲得計時器一個周期需要的計數(shù)次數(shù) */ uint32_t
    發(fā)表于 09-01 15:20

    DeepSeek R1 MTP在TensorRT-LLM中的實現(xiàn)與優(yōu)化

    TensorRT-LLM 在 NVIDIA Blackwell GPU 上創(chuàng)下了 DeepSeek-R1 推理性能的世界紀錄,Multi-Token Prediction (MTP) 實現(xiàn)了大幅提速
    的頭像 發(fā)表于 08-30 15:47 ?4033次閱讀
    DeepSeek R1 MTP在<b class='flag-5'>TensorRT</b>-LLM中的實現(xiàn)與<b class='flag-5'>優(yōu)化</b>

    TensorRT-LLM中的分離式服務(wù)

    在之前的技術(shù)博客中,我們介紹了低延遲[1] 和高吞吐[2] 場景的優(yōu)化方法。對于生產(chǎn)部署,用戶還關(guān)心在滿足特定延遲約束的情況下,每個 GPU 的吞吐表現(xiàn)。本文將圍繞“吞吐量-延遲”性能場景,介紹 TensorRT-LLM 分離式
    的頭像 發(fā)表于 08-27 12:29 ?1440次閱讀
    <b class='flag-5'>TensorRT</b>-LLM中的分離式服務(wù)

    NVIDIA從云到邊緣加速OpenAI gpt-oss模型部署,實現(xiàn)150萬TPS推理

    ? 自 2016 年推出 NVIDIA DGX 以來,NVIDIA 與 OpenAI 便開始共同推動 AI 技術(shù)的邊界。此次 OpenAI gpt-oss-20b 和 gpt-oss-
    的頭像 發(fā)表于 08-15 20:34 ?2007次閱讀
    <b class='flag-5'>NVIDIA</b>從云到邊緣加速OpenAI <b class='flag-5'>gpt</b>-oss模型部署,實現(xiàn)150萬TPS推理

    北汽極狐阿爾法T5 Robotaxi量產(chǎn)下線

    近日,極狐 阿爾法T5 Robotaxi正式量產(chǎn)下線,并已全面啟動在深圳的落地運營推進工作。這款搭載小馬智行第七代自動駕駛系統(tǒng)的車型即將來到千萬人身邊,這標志著4級高度自動駕駛技術(shù)正式走向普及,加速融入大眾生活。
    的頭像 發(fā)表于 07-21 10:49 ?888次閱讀

    NVIDIA RTX AI加速FLUX.1 Kontext現(xiàn)已開放下載

    NVIDIA RTX 與 NVIDIA TensorRT 現(xiàn)已加速 Black Forest Labs 的最新圖像生成和編輯模型;此外,Gemma 3n 現(xiàn)可借助 RTX 和 NVIDIA
    的頭像 發(fā)表于 07-16 09:16 ?1894次閱讀

    如何在魔搭社區(qū)使用TensorRT-LLM加速優(yōu)化Qwen3系列模型推理部署

    TensorRT-LLM 作為 NVIDIA 專為 LLM 推理部署加速優(yōu)化的開源庫,可幫助開發(fā)者快速利用最新 LLM 完成應(yīng)用原型驗證與產(chǎn)品部署。
    的頭像 發(fā)表于 07-04 14:38 ?1787次閱讀

    使用NVIDIA Triton和TensorRT-LLM部署TTS應(yīng)用的最佳實踐

    針對基于 Diffusion 和 LLM 類別的 TTS 模型,NVIDIA Triton 和 TensorRT-LLM 方案能顯著提升推理速度。在單張 NVIDIA Ada Lovelace
    的頭像 發(fā)表于 06-12 15:37 ?1354次閱讀
    使用<b class='flag-5'>NVIDIA</b> Triton和<b class='flag-5'>TensorRT</b>-LLM部署TTS應(yīng)用的最佳實踐

    用PaddleNLP在4060單卡上實踐大模型預(yù)訓(xùn)練技術(shù)

    手把手教您如何在單張消費級顯卡上,利用PaddleNLP實踐OpenAI的GPT-2模型的預(yù)訓(xùn)練。GPT-2的預(yù)訓(xùn)練關(guān)鍵技術(shù)與流程與GPT-4等大參數(shù)模型如出一轍,通過親手實踐GPT-2
    的頭像 發(fā)表于 02-19 16:10 ?2159次閱讀
    用PaddleNLP在4060單卡上實踐大模型預(yù)訓(xùn)練技術(shù)

    OpenAI即將發(fā)布GPT-4.5與GPT-5

    近日,OpenAI的首席執(zhí)行官Sam Altman在社交平臺上透露了公司即將推出的重大計劃。據(jù)他透露,OpenAI計劃在不久的將來連續(xù)發(fā)布兩款重要的AI算法——GPT-4.5和GPT-5。 據(jù)悉
    的頭像 發(fā)表于 02-13 13:43 ?1050次閱讀

    OpenAI即將推出GPT-5模型

    OpenAI首席執(zhí)行官奧爾特曼近日宣布了一項重要消息:OpenAI將在今年未來幾個月內(nèi)推出全新的GPT-5模型。這一消息引起了業(yè)界的廣泛關(guān)注和期待。 據(jù)了解,GPT-5模型將整合OpenAI的大量
    的頭像 發(fā)表于 02-13 11:21 ?934次閱讀

    OpenAI CEO預(yù)告GPT-4.5及GPT-5未來規(guī)劃

    近日,OpenAI的首席執(zhí)行官薩姆·奧爾特曼(Sam Altman)放出了一則令人矚目的更新預(yù)告,透露了GPT-4.5和GPT-5的未來規(guī)劃。 據(jù)奧爾特曼透露,OpenAI將在接下來的幾個月內(nèi)推出
    的頭像 發(fā)表于 02-13 10:02 ?771次閱讀

    NVIDIA TensorRT-LLM中啟用ReDrafter的一些變化

    Recurrent Drafting (簡稱 ReDrafter) 是蘋果公司為大語言模型 (LLM) 推理開發(fā)并開源的一種新型推測解碼技術(shù),該技術(shù)現(xiàn)在可與 NVIDIA TensorRT-LLM 一起使用。
    的頭像 發(fā)表于 12-25 17:31 ?1263次閱讀
    在<b class='flag-5'>NVIDIA</b> <b class='flag-5'>TensorRT</b>-LLM中啟用ReDrafter的一些變化

    OpenAI GPT-5開發(fā)滯后:訓(xùn)練成本高昂

    已經(jīng)對GPT-5進行了至少兩輪大規(guī)模訓(xùn)練,希望通過海量數(shù)據(jù)資源來優(yōu)化模型效能。然而,首次訓(xùn)練的實際運行結(jié)果并未達到預(yù)期標準,導(dǎo)致更大規(guī)模的訓(xùn)練嘗試變得耗時且成本更高。據(jù)估計,GPT-5的訓(xùn)練成本已經(jīng)高達
    的頭像 發(fā)表于 12-23 11:04 ?1463次閱讀