chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

使用LoRA和Hugging Face高效訓練大語言模型

深度學習自然語言處理 ? 來源:Hugging Face ? 2023-04-14 17:37 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

在本文中,我們將展示如何使用 大語言模型低秩適配 (Low-Rank Adaptation of Large Language Models,LoRA) 技術在單 GPU 上微調 110 億參數的 FLAN-T5 XXL 模型。在此過程中,我們會使用到 Hugging Face 的 Transformers、Accelerate 和 PEFT 庫。

快速入門: 輕量化微調 (Parameter Efficient Fine-Tuning,PEFT)

PEFT 是 Hugging Face 的一個新的開源庫。使用 PEFT 庫,無需微調模型的全部參數,即可高效地將預訓練語言模型 (Pre-trained Language Model,PLM) 適配到各種下游應用。

注意: 本教程是在 g5.2xlarge AWS EC2 實例上創(chuàng)建和運行的,該實例包含 1 個 NVIDIA A10G。

1. 搭建開發(fā)環(huán)境

在本例中,我們使用 AWS 預置的 PyTorch 深度學習 AMI,其已安裝了正確的 CUDA 驅動程序和 PyTorch。在此基礎上,我們還需要安裝一些 Hugging Face 庫,包括 transformers 和 datasets。運行下面的代碼就可安裝所有需要的包。

#installHuggingFaceLibraries
!pipinstallgit+https://github.com/huggingface/peft.git
!pipinstall"transformers==4.27.1""datasets==2.9.0""accelerate==0.17.1""evaluate==0.4.0""bitsandbytes==0.37.1"loralib--upgrade--quiet
#installadditionaldependenciesneededfortraining
!pipinstallrouge-scoretensorboardpy7zr

2. 加載并準備數據集

這里,我們使用 samsum 數據集,該數據集包含大約 16k 個含摘要的聊天類對話數據。這些對話由精通英語的語言學家制作。

{
"id":"13818513",
"summary":"AmandabakedcookiesandwillbringJerrysometomorrow.",
"dialogue":"Amanda:Ibakedcookies.Doyouwantsome?
Jerry:Sure!
Amanda:I'llbringyoutomorrow:-)"
}

我們使用 Datasets 庫中的 load_dataset() 方法來加載 samsum 數據集。

fromdatasetsimportload_dataset

#Loaddatasetfromthehub
dataset=load_dataset("samsum")

print(f"Traindatasetsize:{len(dataset['train'])}")
print(f"Testdatasetsize:{len(dataset['test'])}")

#Traindatasetsize:14732
#Testdatasetsize:819

為了訓練模型,我們要用 Transformers Tokenizer 將輸入文本轉換為詞元 ID。

fromtransformersimportAutoTokenizer,AutoModelForSeq2SeqLM

model_id="google/flan-t5-xxl"

#LoadtokenizerofFLAN-t5-XL
tokenizer=AutoTokenizer.from_pretrained(model_id)

在開始訓練之前,我們還需要對數據進行預處理。生成式文本摘要屬于文本生成任務。我們將文本輸入給模型,模型會輸出摘要。我們需要了解輸入和輸出文本的長度信息,以利于我們高效地批量處理這些數據。

fromdatasetsimportconcatenate_datasets
importnumpyasnp
#Themaximumtotalinputsequencelengthaftertokenization.
#Sequenceslongerthanthiswillbetruncated,sequencesshorterwillbepadded.
tokenized_inputs=concatenate_datasets([dataset["train"],dataset["test"]]).map(lambdax:tokenizer(x["dialogue"],truncation=True),batched=True,remove_columns=["dialogue","summary"])
input_lenghts=[len(x)forxintokenized_inputs["input_ids"]]
#take85percentileofmaxlengthforbetterutilization
max_source_length=int(np.percentile(input_lenghts,85))
print(f"Maxsourcelength:{max_source_length}")

#Themaximumtotalsequencelengthfortargettextaftertokenization.
#Sequenceslongerthanthiswillbetruncated,sequencesshorterwillbepadded."
tokenized_targets=concatenate_datasets([dataset["train"],dataset["test"]]).map(lambdax:tokenizer(x["summary"],truncation=True),batched=True,remove_columns=["dialogue","summary"])
target_lenghts=[len(x)forxintokenized_targets["input_ids"]]
#take90percentileofmaxlengthforbetterutilization
max_target_length=int(np.percentile(target_lenghts,90))
print(f"Maxtargetlength:{max_target_length}")

我們將在訓練前統(tǒng)一對數據集進行預處理并將預處理后的數據集保存到磁盤。你可以在本地機器或 CPU 上運行此步驟并將其上傳到 Hugging Face Hub。

defpreprocess_function(sample,padding="max_length"):
#addprefixtotheinputfort5
inputs=["summarize:"+itemforiteminsample["dialogue"]]

#tokenizeinputs
model_inputs=tokenizer(inputs,max_length=max_source_length,padding=padding,truncation=True)

#Tokenizetargetswiththe`text_target`keywordargument
labels=tokenizer(text_target=sample["summary"],max_length=max_target_length,padding=padding,truncation=True)

#Ifwearepaddinghere,replacealltokenizer.pad_token_idinthelabelsby-100whenwewanttoignore
#paddingintheloss.
ifpadding=="max_length":
labels["input_ids"]=[
[(lifl!=tokenizer.pad_token_idelse-100)forlinlabel]forlabelinlabels["input_ids"]
]

model_inputs["labels"]=labels["input_ids"]
returnmodel_inputs

tokenized_dataset=dataset.map(preprocess_function,batched=True,remove_columns=["dialogue","summary","id"])
print(f"Keysoftokenizeddataset:{list(tokenized_dataset['train'].features)}")

#savedatasetstodiskforlatereasyloading
tokenized_dataset["train"].save_to_disk("data/train")
tokenized_dataset["test"].save_to_disk("data/eval")

3. 使用 LoRA 和 bnb int-8 微調 T5

除了 LoRA 技術,我們還使用 bitsanbytes LLM.int8() 把凍結的 LLM 量化為 int8。這使我們能夠將 FLAN-T5 XXL 所需的內存降低到約四分之一。

訓練的第一步是加載模型。我們使用 philschmid/flan-t5-xxl-sharded-fp16 模型,它是 google/flan-t5-xxl 的分片版。分片可以讓我們在加載模型時不耗盡內存。

fromtransformersimportAutoModelForSeq2SeqLM

#huggingfacehubmodelid
model_id="philschmid/flan-t5-xxl-sharded-fp16"

#loadmodelfromthehub
model=AutoModelForSeq2SeqLM.from_pretrained(model_id,load_in_8bit=True,device_map="auto")

現在,我們可以使用 peft 為 LoRA int-8 訓練作準備了。

frompeftimportLoraConfig,get_peft_model,prepare_model_for_int8_training,TaskType

#DefineLoRAConfig
lora_config=LoraConfig(
r=16,
lora_alpha=32,
target_modules=["q","v"],
lora_dropout=0.05,
bias="none",
task_type=TaskType.SEQ_2_SEQ_LM
)
#prepareint-8modelfortraining
model=prepare_model_for_int8_training(model)

#addLoRAadaptor
model=get_peft_model(model,lora_config)
model.print_trainable_parameters()

#trainableparams:18874368||allparams:11154206720||trainable%:0.16921300163961817

如你所見,這里我們只訓練了模型參數的 0.16%!這個巨大的內存增益讓我們安心地微調模型,而不用擔心內存問題。

接下來需要創(chuàng)建一個 DataCollator,負責對輸入和標簽進行填充,我們使用 Transformers 庫中的 DataCollatorForSeq2Seq 來完成這一環(huán)節(jié)。

fromtransformersimportDataCollatorForSeq2Seq

#wewanttoignoretokenizerpadtokenintheloss
label_pad_token_id=-100
#Datacollator
data_collator=DataCollatorForSeq2Seq(
tokenizer,
model=model,
label_pad_token_id=label_pad_token_id,
pad_to_multiple_of=8
)

最后一步是定義訓練超參 ( TrainingArguments)。

fromtransformersimportSeq2SeqTrainer,Seq2SeqTrainingArguments

output_dir="lora-flan-t5-xxl"

#Definetrainingargs
training_args=Seq2SeqTrainingArguments(
output_dir=output_dir,
auto_find_batch_size=True,
learning_rate=1e-3,#higherlearningrate
num_train_epochs=5,
logging_dir=f"{output_dir}/logs",
logging_strategy="steps",
logging_steps=500,
save_strategy="no",
report_to="tensorboard",
)

#CreateTrainerinstance
trainer=Seq2SeqTrainer(
model=model,
args=training_args,
data_collator=data_collator,
train_dataset=tokenized_dataset["train"],
)
model.config.use_cache=False#silencethewarnings.Pleasere-enableforinference!

運行下面的代碼,開始訓練模型。請注意,對于 T5,出于收斂穩(wěn)定性考量,某些層我們仍保持 float32 精度。

#trainmodel
trainer.train()

訓練耗時約 10 小時 36 分鐘,訓練 10 小時的成本約為 13.22 美元。相比之下,如果 在 FLAN-T5-XXL 上進行全模型微調 10 個小時,我們需要 8 個 A100 40GB,成本約為 322 美元。

我們可以將模型保存下來以用于后面的推理和評估。我們暫時將其保存到磁盤,但你也可以使用 model.push_to_hub 方法將其上傳到 Hugging Face Hub。

#SaveourLoRAmodel&tokenizerresults
peft_model_id="results"
trainer.model.save_pretrained(peft_model_id)
tokenizer.save_pretrained(peft_model_id)
#ifyouwanttosavethebasemodeltocall
#trainer.model.base_model.save_pretrained(peft_model_id)

最后生成的 LoRA checkpoint 文件很小,僅需 84MB 就包含了從 samsum 數據集上學到的所有知識。

4. 使用 LoRA FLAN-T5 進行評估和推理

我們將使用 evaluate 庫來評估 rogue 分數。我們可以使用 PEFT 和 transformers 來對 FLAN-T5 XXL 模型進行推理。對 FLAN-T5 XXL 模型,我們至少需要 18GB 的 GPU 顯存。

importtorch
frompeftimportPeftModel,PeftConfig
fromtransformersimportAutoModelForSeq2SeqLM,AutoTokenizer

#Loadpeftconfigforpre-trainedcheckpointetc.
peft_model_id="results"
config=PeftConfig.from_pretrained(peft_model_id)

#loadbaseLLMmodelandtokenizer
model=AutoModelForSeq2SeqLM.from_pretrained(config.base_model_name_or_path,load_in_8bit=True,device_map={"":0})
tokenizer=AutoTokenizer.from_pretrained(config.base_model_name_or_path)

#LoadtheLoramodel
model=PeftModel.from_pretrained(model,peft_model_id,device_map={"":0})
model.eval()

print("Peftmodelloaded")

我們用測試數據集中的一個隨機樣本來試試摘要效果。

fromdatasetsimportload_dataset
fromrandomimportrandrange

#Loaddatasetfromthehubandgetasample
dataset=load_dataset("samsum")
sample=dataset['test'][randrange(len(dataset["test"]))]

input_ids=tokenizer(sample["dialogue"],return_tensors="pt",truncation=True).input_ids.cuda()
#withtorch.inference_mode():
outputs=model.generate(input_ids=input_ids,max_new_tokens=10,do_sample=True,top_p=0.9)
print(f"inputsentence:{sample['dialogue']}
{'---'*20}")

print(f"summary:
{tokenizer.batch_decode(outputs.detach().cpu().numpy(),skip_special_tokens=True)[0]}")

不錯!我們的模型有效!現在,讓我們仔細看看,并使用 test 集中的全部數據對其進行評估。為此,我們需要實現一些工具函數來幫助生成摘要并將其與相應的參考摘要組合到一起。評估摘要任務最常用的指標是 rogue_score,它的全稱是 Recall-Oriented Understudy for Gisting Evaluation。與常用的準確率指標不同,它將生成的摘要與一組參考摘要進行比較。

importevaluate
importnumpyasnp
fromdatasetsimportload_from_disk
fromtqdmimporttqdm

#Metric
metric=evaluate.load("rouge")

defevaluate_peft_model(sample,max_target_length=50):
#generatesummary
outputs=model.generate(input_ids=sample["input_ids"].unsqueeze(0).cuda(),do_sample=True,top_p=0.9,max_new_tokens=max_target_length)
prediction=tokenizer.decode(outputs[0].detach().cpu().numpy(),skip_special_tokens=True)
#decodeevalsample
#Replace-100inthelabelsaswecan'tdecodethem.
labels=np.where(sample['labels']!=-100,sample['labels'],tokenizer.pad_token_id)
labels=tokenizer.decode(labels,skip_special_tokens=True)

#Somesimplepost-processing
returnprediction,labels

#loadtestdatasetfromdistk
test_dataset=load_from_disk("data/eval/").with_format("torch")

#runpredictions
#thiscantake~45minutes
predictions,references=[],[]
forsampleintqdm(test_dataset):
p,l=evaluate_peft_model(sample)
predictions.append(p)
references.append(l)

#computemetric
rogue=metric.compute(predictions=predictions,references=references,use_stemmer=True)

#printresults
print(f"Rogue1:{rogue['rouge1']*100:2f}%")
print(f"rouge2:{rogue['rouge2']*100:2f}%")
print(f"rougeL:{rogue['rougeL']*100:2f}%")
print(f"rougeLsum:{rogue['rougeLsum']*100:2f}%")

#Rogue1:50.386161%
#rouge2:24.842412%
#rougeL:41.370130%
#rougeLsum:41.394230%

我們 PEFT 微調后的 FLAN-T5-XXL 在測試集上取得了 50.38% 的 rogue1 分數。相比之下,flan-t5-base 的全模型微調獲得了 47.23 的 rouge1 分數。rouge1 分數提高了 3%。

令人難以置信的是,我們的 LoRA checkpoint 只有 84MB,而且性能比對更小的模型進行全模型微調后的 checkpoint 更好。





審核編輯:劉清

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • PLM
    PLM
    +關注

    關注

    2

    文章

    148

    瀏覽量

    22054
  • AWS
    AWS
    +關注

    關注

    0

    文章

    444

    瀏覽量

    26515
  • LoRa模塊
    +關注

    關注

    5

    文章

    150

    瀏覽量

    15252
  • pytorch
    +關注

    關注

    2

    文章

    813

    瀏覽量

    14824

原文標題:使用 LoRA 和 Hugging Face 高效訓練大語言模型

文章出處:【微信號:zenRRan,微信公眾號:深度學習自然語言處理】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關推薦
    熱點推薦

    什么是大模型,智能體...?大模型100問,快速全面了解!

    一、概念篇1.什么是大模型?大模型是指參數規(guī)模巨大(通常達到數十億甚至萬億級別)、使用海量數據訓練而成的人工智能模型。2.什么是大語言
    的頭像 發(fā)表于 02-02 16:36 ?830次閱讀
    什么是大<b class='flag-5'>模型</b>,智能體...?大<b class='flag-5'>模型</b>100問,快速全面了解!

    NVIDIA推出面向語言、機器人和生物學的全新開源AI技術

    NVIDIA 秉持對開源的長期承諾,推出了面向語言、機器人和生物學的全新開源 AI 技術,為構建開源生態(tài)系統(tǒng)做出貢獻,擴展 AI 的普及并推動創(chuàng)新。NVIDIA 正將這些模型、數據和訓練框架貢獻給
    的頭像 發(fā)表于 11-06 11:49 ?1038次閱讀

    在Ubuntu20.04系統(tǒng)中訓練神經網絡模型的一些經驗

    本帖欲分享在Ubuntu20.04系統(tǒng)中訓練神經網絡模型的一些經驗。我們采用jupyter notebook作為開發(fā)IDE,以TensorFlow2為訓練框架,目標是訓練一個手寫數字識
    發(fā)表于 10-22 07:03

    NVIDIA開源Audio2Face模型及SDK

    NVIDIA 現已開源 Audio2Face 模型與 SDK,讓所有游戲和 3D 應用開發(fā)者都可以構建并部署帶有先進動畫的高精度角色。NVIDIA 開源 Audio2Face訓練
    的頭像 發(fā)表于 10-21 11:11 ?798次閱讀
    NVIDIA開源Audio2<b class='flag-5'>Face</b><b class='flag-5'>模型</b>及SDK

    什么是AI模型的推理能力

    NVIDIA 的數據工廠團隊為 NVIDIA Cosmos Reason 等 AI 模型奠定了基礎,該模型近日在 Hugging Face 的物理推理
    的頭像 發(fā)表于 09-23 15:19 ?1230次閱讀

    利用自壓縮實現大型語言模型高效縮減

    隨著語言模型規(guī)模日益龐大,設備端推理變得越來越緩慢且耗能巨大。一個直接且效果出人意料的解決方案是剪除那些對任務貢獻甚微的完整通道(channel)。我們早期的研究提出了一種訓練階段的方法——自壓
    的頭像 發(fā)表于 07-28 09:36 ?537次閱讀
    利用自壓縮實現大型<b class='flag-5'>語言</b><b class='flag-5'>模型</b><b class='flag-5'>高效</b>縮減

    如何高效訓練AI模型?這些常用工具你必須知道!

    模型的發(fā)展同樣面臨瓶頸,訓練所需的硬件資源日益增加,比如英偉達的芯片、電力等(這也可能是ChatGPT5遲遲沒有出來的原因)。業(yè)界有觀點認為,在大多數情況下,并不需要全能的大模型,而是更適合專注于
    的頭像 發(fā)表于 04-17 16:43 ?2239次閱讀
    如何<b class='flag-5'>高效</b><b class='flag-5'>訓練</b>AI<b class='flag-5'>模型</b>?這些常用工具你必須知道!

    如何基于Android 14在i.MX95 EVK上運行Deepseek-R1-1.5B和性能

    Internet,或者您可以手動下載模型。按“ ”并選擇 “從Hugging Face添加” 并搜索1.5B,找到deepseek-R1-1.5B模型,下載
    發(fā)表于 04-04 06:59

    請問如何在imx8mplus上部署和運行YOLOv5訓練模型

    我正在從事 imx8mplus yocto 項目。我已經在自定義數據集上的 YOLOv5 上訓練了對象檢測模型。它在 ubuntu 電腦上運行良好?,F在我想在我的 imx8mplus 板上運行該模型
    發(fā)表于 03-25 07:23

    用PaddleNLP為GPT-2模型制作FineWeb二進制預訓練數據集

    作者:算力魔方創(chuàng)始人/英特爾創(chuàng)新大使劉力 《用PaddleNLP在4060單卡上實踐大模型訓練技術》發(fā)布后收到讀者熱烈反響,很多讀者要求進一步講解更多的技術細節(jié)。本文主要針對大語言模型
    的頭像 發(fā)表于 03-21 18:24 ?4225次閱讀
    用PaddleNLP為GPT-2<b class='flag-5'>模型</b>制作FineWeb二進制預<b class='flag-5'>訓練</b>數據集

    利用RAKsmart服務器托管AI模型訓練的優(yōu)勢

    AI模型訓練需要強大的計算資源、高效的存儲和穩(wěn)定的網絡支持,這對服務器的性能提出了較高要求。而RAKsmart服務器憑借其核心優(yōu)勢,成為托管AI模型
    的頭像 發(fā)表于 03-18 10:08 ?675次閱讀

    利用英特爾OpenVINO在本地運行Qwen2.5-VL系列模型

    近期阿里通義實驗室在 Hugging Face 和 ModelScope 上開源了 Qwen2.5-VL 的 Base 和 Instruct 模型,包含 3B、7B 和 72B 在內的 3 個
    的頭像 發(fā)表于 03-12 13:42 ?2574次閱讀
    利用英特爾OpenVINO在本地運行Qwen2.5-VL系列<b class='flag-5'>模型</b>

    訓練好的ai模型導入cubemx不成功怎么處理?

    訓練好的ai模型導入cubemx不成功咋辦,試了好幾個模型壓縮了也不行,ram占用過大,有無解決方案?
    發(fā)表于 03-11 07:18

    從OpenVINO? 2019_R3下載的face-detection-retail-0004模型,運行時報錯怎么解決?

    從 OpenVINO? 2019_R3 下載的 face-detection-retail-0004 模型。 構建開源OpenVINO?版本 2020.1 運行 Interactive
    發(fā)表于 03-05 06:00

    小白學大模型訓練語言模型的深度指南

    在當今人工智能飛速發(fā)展的時代,大型語言模型(LLMs)正以其強大的語言理解和生成能力,改變著我們的生活和工作方式。在最近的一項研究中,科學家們?yōu)榱松钊肓私馊绾?b class='flag-5'>高效
    的頭像 發(fā)表于 03-03 11:51 ?1393次閱讀
    小白學大<b class='flag-5'>模型</b>:<b class='flag-5'>訓練</b>大<b class='flag-5'>語言</b><b class='flag-5'>模型</b>的深度指南