chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

基于超表面實時超光譜成像芯片的研究進展

MEMS ? 來源:MEMS ? 2023-08-12 09:35 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

基于空間掃描或波長掃描的傳統(tǒng)光譜成像設備體積龐大,無法獲取動態(tài)的光譜信息。利用超表面可以實現(xiàn)豐富的光譜調制函數(shù),結合計算重建和空分復用方法可以實現(xiàn)高光譜分辨率和空間分辨率的實時光譜成像芯片。

據(jù)麥姆斯咨詢報道,近期,清華大學電子工程系、北京國家信息科學技術研究中心和北京量子信息科學研究院的科研團隊在《光學學報》期刊上發(fā)表了以“基于超表面的實時超光譜成像芯片”為主題的文章。該文章第一作者為楊家偉,通訊作者為崔開宇副教授和黃翊東教授。

本文介紹了超表面光譜成像芯片的相關工作進展,給出了超表面光譜成像芯片的光譜成像原理,主要從結構設計、重建算法、實際應用等方面介紹了超表面光譜成像芯片的研究進展,并討論和展望了其未來的發(fā)展趨勢和應用前景。根據(jù)數(shù)據(jù)采集方式的不同,還可將光譜成像分為點掃描、線掃描、波長掃描和快照式四類,如圖1所示。

37f3440c-3861-11ee-9e74-dac502259ad0.jpg

圖1 光譜成像按采集方式的分類

超表面光譜成像的基本原理

超表面是具有亞波長周期的微納結構陣列,具有高度靈活的光調控能力。利用超表面可以實現(xiàn)對入射光豐富的頻譜調制,結合計算光譜重建原理,可以實現(xiàn)結構緊湊的微型光譜儀,通過陣列化排布可以實現(xiàn)片上光譜成像。

超表面光譜成像芯片的結構示意圖如圖2(a)所示,芯片由超表面層和下方的CMOS圖像傳感器組成,超表面層包含多個超表面單元,每個超表面單元都是具有亞波長周期的微納結構陣列,通過改變超表面單元的結構參數(shù),可以實現(xiàn)不同的光譜調制函數(shù),即不同的透射譜Ti(λ)。入射光經(jīng)超表面單元調制后被其下方的圖像傳感器像素所探測,根據(jù)若干個光強探測值Ii便可重建得到入射光的光譜f(λ),實現(xiàn)微型光譜儀的作用,工作原理如圖2(b)所示。

37feba1c-3861-11ee-9e74-dac502259ad0.jpg

圖2 基于超表面的光譜成像原理:(a)超表面光譜成像芯片的結構示意圖,包括超表面層和CMOS圖像傳感器的兩部分;(b)單個超表面微型光譜儀的光譜重建原理;(c)超表面的空分復用原理

對于整個光譜成像芯片而言,在光譜信號測量時,會得到一幅透射強度圖,如圖2(c)所示。對于任一點而言,可以選取該點附近的任意個測量值進行計算。換言之,可以構建一個任意N形狀的超表面光譜儀進行光譜測量,且相鄰微型光譜儀間可以共用相同的超表面單元。例如,圖2(c)中的1、2、3標記的框圖分別表示包含25個、49個、33個超表面單元的微型光譜儀,利用這種空分復用原理可以大大提升光譜成像的空間分辨率。

超表面單元的結構設計

超表面單元的設計目標

為了提高超表面光譜儀的光譜分辨率,需要對測量矩陣進行優(yōu)化設計。從光譜分辨率的定義出發(fā),結合光譜重建過程,可以確定的優(yōu)化目標。光譜分辨率一般是指光譜儀所能分辨的兩個相鄰譜線的最小波長間隔。圖3(a)展示了一個微型超表面光譜儀所包含的各個超表面單元的透射譜,當波長為的單色光[圖3(a)中的左邊的豎線]入射到該超表面光譜儀時,在不考慮測量噪聲的情況下,其對應的測量向量即為矩陣的某一列,如圖3(b)所示。同理,波長為的單色光[圖3(a)中的右邊的豎線]入射時,對應的測量向量為矩陣的另一列。因此,要提高超表面光譜儀在某一波長處的分辨率,就要求矩陣的列向量與其他各列的最大相關性盡量小。那么,為了提高超表面光譜儀在整個工作波段的平均光譜分辨能力,本文定義了一個測量矩陣的設計目標,即使的平均最大列相關性盡量小。

38268cae-3861-11ee-9e74-dac502259ad0.jpg

圖3 超表面單元的設計目標

基于規(guī)則形狀超表面單元的光譜成像芯片

2022年,本文作者團隊基于規(guī)則形狀的超表面單元研制出國際首款實時超光譜成像芯片。如圖4(a)所示,設計的超表面單元分為五種類型:圓孔型、方孔型、十字孔型,以及方孔和十字孔經(jīng)過45°旋轉后得到的圖案。這五種類型的圖案均滿足四重旋轉對稱性,以保證對應超表面單元在正入射條件下具有偏振無關的光譜調制特性。該款實時超光譜成像芯片將單點光譜儀的尺寸縮小到百微米量級以下,單次拍照可以獲得空間中超過15萬個點的光譜信息,即在0.5 cm2的芯片上集成了超過15萬個(356×436)微型光譜儀,每個微型光譜儀的工作譜寬為450~750 nm,單色光的測量精度(即波長精度)達到0.04 nm,光譜分辨率高達0.8 nm。

383555f4-3861-11ee-9e74-dac502259ad0.jpg

圖4 國際首款實時超光譜成像芯片及其性能指標

基于自由形狀超表面單元的光譜成像芯片

為突破規(guī)則形狀的設計自由度限制,本文作者團隊進一步提出了一種自由形狀超原子的超表面設計方法,通過對一個超原子內的區(qū)域進行網(wǎng)格劃分、格點值隨機分配以及濾波和二值化處理來生成自由形狀。由于格點值是隨機分配的,每次得到的自由形狀都不盡相同,相應的設計自由度與規(guī)則形狀相比擴大了2~3個數(shù)量級。得益于超表面參數(shù)設計空間的擴大,基于自由形狀超原子超表面的超光譜成像芯片的性能有了進一步提升,波長分辨率提升至0.5 nm(見圖5)。

38600182-3861-11ee-9e74-dac502259ad0.jpg

圖5 基于自由形狀超原子超表面的超光譜成像芯片

利用該芯片對24色標準色卡和不同水果進行光譜成像的結果,如圖6所示。以空間掃描式的商用光譜相機(四川雙利合譜科技有限公司,型號為GaiaField Pro V10)所拍攝的結果作為參考,利用超光譜相機對24種顏色塊的平均光譜重建保真度達到98.78%。

38988dae-3861-11ee-9e74-dac502259ad0.jpg

圖6 基于自由形狀超原子超表面的超光譜成像芯片對標準色卡和水果的光譜成像結果

基于神經(jīng)網(wǎng)絡的快速重建算法

超表面光譜成像芯片需要對圖像各點通過求解欠定線性方程組進行光譜重建,以得到最終的光譜圖像。然而,基于線性方程組的迭代求解算法,無法實現(xiàn)光譜圖像的快速重建。此外,在光譜重建時假定了同一超表面光譜儀內各個超表面單元接收的光譜是相同的,但是在圖像邊緣處這一假設并不成立,因此圖像邊緣處存在較大的重建誤差,導致重建的光譜圖像出現(xiàn)馬賽克現(xiàn)象。為了實現(xiàn)光譜圖像的快速重建,并盡可能消除圖像的馬賽克現(xiàn)象,本文作者團隊提出利用基于乘法器的交替方向法(ADMM)迭代算法的深度展開神經(jīng)網(wǎng)絡ADMM-net實現(xiàn)光譜圖像的快速重建。如圖7(a)所示,網(wǎng)絡由k=12個子網(wǎng)絡級聯(lián)而成,每個子網(wǎng)絡稱為一個階段,對應于傳統(tǒng)的ADMM迭代算法中的每一步迭代,具體來說,每個階段都包含線性變換部分W(?)和卷積神經(jīng)網(wǎng)絡(CNN)降噪部分,分別對應于ADMM迭代算法中的梯度下降和正則化過程。

38b16b62-3861-11ee-9e74-dac502259ad0.jpg

圖7 ADMM-net的基本架構及對標準色卡的重建結果

利用基于自由形狀超原子超表面的超光譜成像芯片對標準色卡進行成像測量后,再利用ADMM-net進行光譜圖像重建的結果如圖7(b)所示。與商用光譜相機的采集結果、傳統(tǒng)的利用CVX算法進行逐點光譜重建的結果、采用傳統(tǒng)的迭代算法GAP-TV的重建結果和采用端到端神經(jīng)網(wǎng)絡λ-net的重建結果進行對比,可以看到,相比于傳統(tǒng)的逐點光譜重建結果,ADMM-net的圖像細節(jié)重建效果更優(yōu),顯著消除了圖像的馬賽克現(xiàn)象。并且,相比于其他三種算法,ADMM-net的光譜重建準確性也更優(yōu),對于標準色卡中的四個采樣點,其平均光譜重建似然度為99.53%,而CVX、GAP-TV和λ-net對應的平均似然度分別僅為97.32%、97.18%和97.72%。

表1比較了不同算法重建單個光譜圖像數(shù)據(jù)立方的耗時,并以推掃式商用光譜相機的單次數(shù)據(jù)采集時間為參考。可見,商用光譜相機采集單個數(shù)據(jù)立方需要1 min左右;而采用ADMM-net和λ-net重建大小為256×256×26的數(shù)據(jù)立方,在GPU(NVIDIA GeForce RTX 3080)上分別僅需18 ms和95 ms,在CPUIntel Xeon Gold 6226R)上也分別只需要1.72 s和2.44 s;相比之下,采用傳統(tǒng)的迭代算法GAP-TV需要110 s,而CVX進行逐點光譜重建則需要4854 s。由此可見,ADMM-net的計算效率是最高的,其重建速度相比于CVX提升了約5個數(shù)量級,能夠實現(xiàn)55 frame/s的光譜圖像數(shù)據(jù)立方重建速率,并且可以有效消除重建圖像的馬賽克現(xiàn)象。

表1 不同光譜成像方法的耗時比較

38ec2a0e-3861-11ee-9e74-dac502259ad0.jpg

應用實例

活體大鼠腦光譜成像

光譜成像技術可以應用在腦科學的研究中。在可見光波段550 nm附近,生物體內的血紅蛋白及其衍生物具有明顯的吸收特征,這會在其光譜的反射信號中出現(xiàn)一個明顯的吸收谷。因此,通過光譜成像技術將有可能實現(xiàn)區(qū)域血紅蛋白濃度的實時觀測。在生物學上,通過神經(jīng)-血氧耦合機制,還可進一步將光譜隨時間的變化和神經(jīng)活動聯(lián)系在一起,這為腦科學的研究提供了一種全新的方式。與傳統(tǒng)電極傳感方式不同,光譜成像無須侵入神經(jīng)細胞附近,可以做到非接觸式檢測,因而采集到的信息更加可靠。

利用圖8(b)所示的光譜相機對大鼠進行實時腦光譜成像,能夠測量活體大鼠腦部血紅蛋白及其衍生物的特征光譜的動態(tài)變化,時間分辨率可達30 Hz。圖8(a)是單幀的光譜成像結果,圖中標記出了6個區(qū)域用于分析血紅蛋白的光譜信號。圖8(c)中挑選了4個區(qū)域并繪制了該區(qū)域的光譜信號;其中,區(qū)域1和區(qū)域2為血管區(qū),區(qū)域3和區(qū)域4為非血管區(qū);該圖中用不同顏色的虛線標記出了氧合血紅蛋白(HbO)、碳氧血紅蛋白以及去氧血紅蛋白(HbR)各自的光譜吸收峰的位置,恢復得到的光譜數(shù)據(jù)明顯含有血紅蛋白的吸收特征。圖8(d)和8(e)展示了光譜信號的時域變化,圖的橫坐標為時間,縱坐標為相對光譜強度;在圖8(d)即血管區(qū)域,HbO和HbR的光譜信號成正相關的關系;在圖8(e)即非血管區(qū)域,兩者成負相關的關系。從理論上分析,在血管區(qū)域,血紅蛋白的輸運過程占主導,因此HbO和HbR的濃度同時增加或減少,兩者成正相關的關系;在非血管區(qū)域,細胞呼吸過程占據(jù)主導,因此HbO中的氧氣分子被消耗成為HbR,兩者成負相關的關系。理論上的結論和圖8(d)和8(e)中的實驗結果是保持一致的,這從側面印證了實時腦光譜成像實驗的數(shù)據(jù)的有效性。

38f6897c-3861-11ee-9e74-dac502259ad0.jpg

圖8 國際首款實時超光譜成像芯片對大鼠的實時腦光譜成像結果

基于光譜成像的人臉防偽

人臉識別系統(tǒng)已得到了越來越廣泛的使用,由于其涉及到人民的隱私和財產(chǎn)安全,人臉識別系統(tǒng)的可靠性和安全性引起了越來越廣泛的關注,人臉防偽相關的研究也逐漸被重視?,F(xiàn)有的高安全性的人臉識別系統(tǒng)一般會使用額外的紅外相機和深度相機來獲取人臉的三維結構特征以及紅外反射特征,提升人臉防偽的性能。這些額外的光學傳感器使得現(xiàn)有的人臉識別系統(tǒng)對屏幕回放、二維面具等常見人臉偽裝有著極強的鑒別能力,但對三維高仿真硅膠面具的鑒別能力依然有限。并且隨著3D打印技術的發(fā)展,制作三維高仿真硅膠面具的成本和門檻被降低,給現(xiàn)有人臉識別系統(tǒng)的安全性帶來了一定的挑戰(zhàn)。為了有效鑒別高仿真面具,需要引入新的傳感器來獲取有區(qū)分度的特征。而光譜是分析物質成分的有效手段,因此光譜相機可被用于高可靠性的人臉防偽,快照式光譜成像芯片則為實時人臉防偽提供了有效的光譜感知信息。利用超表面光譜成像芯片可以實現(xiàn)快照式的光譜人臉防偽,如圖9所示,由于人皮膚內血紅蛋白的吸收作用,活體皮膚的光譜反射特性在540 nm和580 nm左右有兩個特征吸收峰,能夠將活體人臉和偽裝材料有效地區(qū)分,并且超表面光譜相機能夠較為準確地重建出此光譜特征。實現(xiàn)的快照式光譜人臉防偽系統(tǒng)首先自動檢測出人臉上多個關鍵點的位置,然后重建出關鍵點處的光譜特征,最后將光譜特征輸入基于神經(jīng)網(wǎng)絡的分類器得到最終的人臉防偽結果。整個系統(tǒng)能夠達到實時進行人臉防偽的性能要求,并且識別高仿真面具的準確率可達95%。

392318de-3861-11ee-9e74-dac502259ad0.jpg

圖9 活體人臉與常見偽裝材料的快照式光譜測量結果

自動駕駛中的同色異譜識別

利用超表面光譜成像芯片結合ADMM-net可以實現(xiàn)實時光譜成像。圖10展示了戶外駕駛場景的動態(tài)光譜成像結果,在8.38 s的時間內,一共采集了300 frame光譜圖像,實現(xiàn)了約36 frame/s的光譜成像速率,其中包含了測量圖像的采集時間和光譜圖像的重建時間。圖10給出了其中8 frame的重建結果,從RGB偽彩色圖中可以看到,車輛的色彩重建準確性較好;并且,從第20 frame和第100 frame圖像中的采樣點A和B的重建光譜來看,天空和白色車輛的光譜具有明顯的差異,因此通過實時光譜成像可以快速區(qū)分顏色相近但光譜不同的物體,有望解決自動駕駛場景的同色異譜識別問題,避免車輛將白色卡車誤認為天空而引起交通事故。

3954af48-3861-11ee-9e74-dac502259ad0.jpg

圖10 戶外駕駛場景的實時光譜成像結果

總結與展望

光譜儀和光譜成像器件具有小型化、集成化的發(fā)展趨勢,微型光譜儀的相關研究也不斷增多,其中,基于超表面的計算重建光譜儀能夠利用少量的光譜調制單元實現(xiàn)高精度的光譜重建,有效減小了單個微型光譜儀的體積,并且易于大規(guī)模集成以實現(xiàn)快照式的光譜成像芯片。本文回顧了基于規(guī)則形狀超表面單元實現(xiàn)的國際首款實時超光譜成像芯片以及基于自由形狀超表面單元的超光譜成像芯片等相關工作,主要從基本原理、結構設計、重建算法和潛在應用等方面對超表面光譜成像芯片的相關研究進行了總結。

在未來,具備高精度、低成本、可量產(chǎn)等優(yōu)勢的超表面光譜成像芯片,將有望成為人工智能和大數(shù)據(jù)行業(yè)發(fā)展的基礎,為智能手機、醫(yī)療器械、機器視覺、增強現(xiàn)實、自動駕駛、智慧城市等應用場景拓展出新的傳感維度,真正讓光譜感知無處不在。目前超表面光譜成像芯片還可以優(yōu)化的方向包括:

1)進一步優(yōu)化光譜圖像重建算法。后續(xù)可以引入Transformer、3D CNN等新型網(wǎng)絡結構,并通過商用光譜相機實際拍攝、數(shù)據(jù)增強等方式拓展光譜圖像數(shù)據(jù)集,提升光譜圖像的重建精度。

2)降低超表面的角度敏感性。超表面為天然的角度敏感型結構,透射譜會隨著入射光角度改變,未來需要考慮通過結構優(yōu)化或引入新的設計理念來實現(xiàn)角度不敏感的透射譜,提高光譜成像的效果。





審核編輯:劉清

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權轉載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • CMOS
    +關注

    關注

    58

    文章

    6193

    瀏覽量

    241708
  • 濾波器
    +關注

    關注

    162

    文章

    8363

    瀏覽量

    184899
  • 圖像傳感器
    +關注

    關注

    68

    文章

    2055

    瀏覽量

    131962
  • 調制器
    +關注

    關注

    3

    文章

    972

    瀏覽量

    48144
  • 光譜成像技術

    關注

    0

    文章

    49

    瀏覽量

    4331

原文標題:基于超表面的實時超光譜成像芯片

文章出處:【微信號:MEMSensor,微信公眾號:MEMS】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關推薦
    熱點推薦

    光學表面成像和傳感中的應用

    和傳感技術中的各種應用以及這些領域的最新進展。 光學表面研究背景 幾十年來,物理學家和工程師一直對光學材料著迷不已。雖然理論討論始于 2
    的頭像 發(fā)表于 11-05 09:09 ?201次閱讀

    基于高光譜成像技術的煙葉含水率檢測研究進展

    小時;電導率法則因煙葉表面油分干擾導致重復性差。高光譜成像技術(Hyperspectral Imaging, HSI)通過非接觸式光譜采集(空間分辨率≤0.1mm,光譜分辨率≤2nm)
    的頭像 發(fā)表于 10-24 17:27 ?784次閱讀
    基于高<b class='flag-5'>光譜成像</b>技術的煙葉含水率檢測<b class='flag-5'>研究進展</b>

    光譜成像用于草地可燃物含水率估測的研究進展

    、空間覆蓋有限等問題。高光譜成像技術(Hyperspectral Imaging, HSI)通過捕捉地物在可見光至短波紅外波段(400–1700 nm)的連續(xù)光譜信息,結合光譜特征與含水率的物理關聯(lián),為草地可燃物含水率的快速、無
    的頭像 發(fā)表于 10-20 11:44 ?145次閱讀

    光譜圖像顏色特征用于茶葉分類的研究進展

    光譜成像技術結合顏色特征分析為茶葉分類提供了高效、非破壞性的解決方案。本文系統(tǒng)綜述了該技術的原理、方法、應用案例及挑戰(zhàn),探討了其在茶葉品質分級、品種識別和產(chǎn)地溯源中的研究進展,并展望了未來發(fā)展方向
    的頭像 發(fā)表于 10-17 17:09 ?441次閱讀
    多<b class='flag-5'>光譜</b>圖像顏色特征用于茶葉分類的<b class='flag-5'>研究進展</b>

    光譜成像在作物長勢監(jiān)測和產(chǎn)量預估的研究進展

    參數(shù)的非接觸式、高精度監(jiān)測。近年來,隨著遙感技術和人工智能算法的發(fā)展,高光譜成像系統(tǒng) (SKY機載高光譜相機+中達瑞和 云平臺) 已成為作物長勢監(jiān)測和產(chǎn)量預估的重要工具。本文系統(tǒng)梳理該技術的原理、應用進展,為相關
    的頭像 發(fā)表于 10-16 16:31 ?393次閱讀
    高<b class='flag-5'>光譜成像</b>在作物長勢監(jiān)測和產(chǎn)量預估的<b class='flag-5'>研究進展</b>

    光譜成像在作物病蟲害監(jiān)測的研究進展

    特性會發(fā)生顯著變化,例如: 葉綠素含量下降 :導致可見光波段(400-700 nm)反射率異常 細胞結構破壞 :引起近紅外波段(700-1300 nm)散射特征改變 水分與糖分異常 :影響短波紅外波段(1300-2500 nm)吸收峰分布 研究進展與關鍵技術突破 (一)光譜
    的頭像 發(fā)表于 10-16 15:53 ?355次閱讀
    高<b class='flag-5'>光譜成像</b>在作物病蟲害監(jiān)測的<b class='flag-5'>研究進展</b>

    光譜成像在種子品種、種子純度、種子活力鑒別的研究進展

    光譜成像技術(Hyperspectral Imaging, HSI)作為一門融合光學、圖像處理與數(shù)據(jù)分析的前沿技術,因其非破壞性、高精度和快速檢測能力,在種子品種鑒別領域展現(xiàn)出巨大潛力。中達瑞
    的頭像 發(fā)表于 10-15 15:02 ?302次閱讀
    高<b class='flag-5'>光譜成像</b>在種子品種、種子純度、種子活力鑒別的<b class='flag-5'>研究進展</b>

    光譜成像技術在指紋提取的研究和應用

    ,高光譜成像技術(Hyperspectral Imaging, HSI)因其在非接觸式、無損檢測和多波段信息獲取方面的優(yōu)勢,成為指紋提取領域的研究熱點。本文系統(tǒng)梳理高光譜成像技術在指紋提取中的原理、
    的頭像 發(fā)表于 09-26 17:55 ?1187次閱讀
    高<b class='flag-5'>光譜成像</b>技術在指紋提取的<b class='flag-5'>研究</b>和應用

    光譜成像的照明源有哪些?

    光譜成像(Hyperspectral Imaging)是一種結合光譜分析與成像技術的多維度數(shù)據(jù)采集方法,能夠獲取目標物體在連續(xù)窄波段范圍內的光譜空間信息。 照明源 (光源)作為高
    的頭像 發(fā)表于 09-17 10:14 ?475次閱讀
    高<b class='flag-5'>光譜成像</b>的照明源有哪些?

    什么是快照式光譜成像相機?

    相比,快照式技術具有以下優(yōu)勢: 實時性:無需機械掃描,可快速捕捉動態(tài)目標(如高速運動物體、活體組織) 無運動偽影:避免因掃描過程中的運動導致的圖像模糊 高效率:單次成像即可獲得完整數(shù)據(jù)立方體(空間×光譜) 二、快照式
    的頭像 發(fā)表于 09-12 11:35 ?517次閱讀
    什么是快照式<b class='flag-5'>光譜成像</b>相機?

    如何有效利用高光譜成像技術提升數(shù)據(jù)分析效率

    光譜數(shù)據(jù),有效解決了傳統(tǒng)成像技術難以分辨細微物質差異的問題。根據(jù)市場研究報告,全球高光譜成像市場預計將以年均12.5%的速度增長,顯示出廣闊的發(fā)展前景。您是否想知道如何通過科學利用高
    的頭像 發(fā)表于 09-11 16:13 ?618次閱讀
    如何有效利用高<b class='flag-5'>光譜成像</b>技術提升數(shù)據(jù)分析效率

    光譜成像相機:基于高光譜成像技術的玉米種子純度檢測研究

    無損檢測領域的研究熱點。中達瑞和作為國內高光譜成像設備的領先供應商,可實現(xiàn)國產(chǎn)替代,助力科研院校進行高光譜成像領域的研究和探索。本研究基于高
    的頭像 發(fā)表于 05-29 16:49 ?475次閱讀

    上海光機所在基于空-譜稀疏深度學習設計的自由曲面透鏡實現(xiàn)景深高光譜成像研究方面取得進展

    圖1 消色差景深高光譜成像系統(tǒng) 近期,中國科學院上海光學精密機械研究所高功率激光元件技術與工程部魏朝陽研究員團隊提出了一種通過引入高光譜數(shù)
    的頭像 發(fā)表于 04-24 06:12 ?504次閱讀
    上海光機所在基于空-譜稀疏深度學習設計的自由曲面透鏡實現(xiàn)<b class='flag-5'>超</b>景深高<b class='flag-5'>光譜成像</b><b class='flag-5'>研究</b>方面取得<b class='flag-5'>進展</b>

    光譜成像相機和光譜視頻監(jiān)控在水環(huán)境中的應用

    應用更為廣泛。光譜成像相機和光譜視頻監(jiān)控就是采用光譜成像的原理,下面就給大家介紹下光譜成像技術在水環(huán)境領域的應用。 1.水質監(jiān)測:光譜成像
    的頭像 發(fā)表于 03-05 14:24 ?651次閱讀

    活細胞的多重 CARS 光譜成像

    流行的分子成像技術只能揭示人體內用色素或熒光蛋白標記的特定分子的分布或行為。然而,拉曼光譜允許研究人員通過光譜分析來識別未標記分子的成分。因此,振動(拉曼)
    的頭像 發(fā)表于 02-14 06:23 ?614次閱讀
    活細胞的<b class='flag-5'>超</b>多重 CARS <b class='flag-5'>光譜成像</b>