chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

什么是BP神經(jīng)網(wǎng)絡(luò)的反向傳播算法

科技綠洲 ? 來源:網(wǎng)絡(luò)整理 ? 作者:網(wǎng)絡(luò)整理 ? 2025-02-12 15:18 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

BP神經(jīng)網(wǎng)絡(luò)的反向傳播算法(Backpropagation Algorithm)是一種用于訓(xùn)練神經(jīng)網(wǎng)絡(luò)的有效方法。以下是關(guān)于BP神經(jīng)網(wǎng)絡(luò)的反向傳播算法的介紹:

一、基本概念

反向傳播算法是BP神經(jīng)網(wǎng)絡(luò)(即反向傳播神經(jīng)網(wǎng)絡(luò))的核心,它建立在梯度下降法的基礎(chǔ)上,是一種適合于多層神經(jīng)元網(wǎng)絡(luò)的學(xué)習(xí)算法。該算法通過計(jì)算每層網(wǎng)絡(luò)的誤差,并將這些誤差反向傳播到前一層,從而調(diào)整權(quán)重,使得網(wǎng)絡(luò)的預(yù)測更接近真實(shí)值。

二、算法原理

反向傳播算法的基本原理是通過計(jì)算損失函數(shù)關(guān)于網(wǎng)絡(luò)參數(shù)的梯度,以便更新參數(shù)從而最小化損失函數(shù)。它主要包含兩個(gè)步驟:前向傳播和反向傳播。

  1. 前向傳播
    • 在前向傳播階段,輸入數(shù)據(jù)通過神經(jīng)網(wǎng)絡(luò)的每一層,計(jì)算輸出(即預(yù)測值)。
    • 對(duì)于每一層神經(jīng)網(wǎng)絡(luò),都會(huì)進(jìn)行線性變換和非線性變換兩個(gè)步驟。線性變換通過矩陣乘法計(jì)算輸入和權(quán)重之間的關(guān)系,非線性變換則通過激活函數(shù)對(duì)線性變換的結(jié)果進(jìn)行非線性映射。
  2. 反向傳播
    • 在反向傳播階段,計(jì)算損失函數(shù)對(duì)參數(shù)的偏導(dǎo)數(shù),將梯度信息從網(wǎng)絡(luò)的輸出層向輸入層進(jìn)行反向傳播。
    • 通過鏈?zhǔn)椒▌t,可以將損失函數(shù)關(guān)于參數(shù)的偏導(dǎo)數(shù)分解為若干個(gè)因子的乘積,每個(gè)因子對(duì)應(yīng)于網(wǎng)絡(luò)中相應(yīng)的計(jì)算過程。
    • 利用這些因子,可以逐層計(jì)算參數(shù)的梯度,并根據(jù)梯度更新參數(shù)值。

三、算法步驟

  1. 初始化網(wǎng)絡(luò)權(quán)重 :隨機(jī)初始化神經(jīng)網(wǎng)絡(luò)中的權(quán)重和偏置。
  2. 前向傳播計(jì)算輸出 :輸入數(shù)據(jù)經(jīng)過每一層,計(jì)算激活值。激活值可以使用激活函數(shù)(如Sigmoid、ReLU、Tanh等)進(jìn)行計(jì)算。
  3. 計(jì)算損失 :使用損失函數(shù)計(jì)算預(yù)測值與真實(shí)值之間的誤差。常用的損失函數(shù)有均方誤差(MSE)和交叉熵?fù)p失等。
  4. 反向傳播誤差
    • 計(jì)算輸出層的誤差,即損失函數(shù)對(duì)輸出層激活值的導(dǎo)數(shù)。
    • 將誤差利用鏈?zhǔn)椒▌t逐層反向傳播,計(jì)算每層的權(quán)重梯度。
  5. 更新權(quán)重 :通過梯度下降等優(yōu)化算法更新網(wǎng)絡(luò)中的權(quán)重。例如,使用梯度下降法更新權(quán)重時(shí),需要計(jì)算梯度并乘以學(xué)習(xí)率,然后從當(dāng)前權(quán)重中減去這個(gè)乘積,得到新的權(quán)重值。

四、算法特點(diǎn)

  1. 優(yōu)點(diǎn)
    • 可以處理大量訓(xùn)練數(shù)據(jù)。
    • 適用于各種復(fù)雜的模式識(shí)別和預(yù)測任務(wù)。
  2. 缺點(diǎn)
    • 容易陷入局部最優(yōu)解。
    • 需要大量計(jì)算資源和訓(xùn)練時(shí)間。
    • 傳統(tǒng)的反向傳播算法存在更新速度的問題,即前面的神經(jīng)元需要等待后面的神經(jīng)網(wǎng)絡(luò)傳回誤差數(shù)據(jù)才能更新,這在處理深層神經(jīng)網(wǎng)絡(luò)時(shí)可能會(huì)變得非常慢。

綜上所述,BP神經(jīng)網(wǎng)絡(luò)的反向傳播算法是一種重要的神經(jīng)網(wǎng)絡(luò)訓(xùn)練算法,它通過前向傳播計(jì)算輸出、反向傳播誤差并更新權(quán)重的方式,不斷調(diào)整網(wǎng)絡(luò)參數(shù)以最小化損失函數(shù)。盡管該算法存在一些缺點(diǎn),但它在許多領(lǐng)域仍然具有廣泛的應(yīng)用價(jià)值。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    神經(jīng)網(wǎng)絡(luò)的初步認(rèn)識(shí)

    日常生活中的智能應(yīng)用都離不開深度學(xué)習(xí),而深度學(xué)習(xí)則依賴于神經(jīng)網(wǎng)絡(luò)的實(shí)現(xiàn)。什么是神經(jīng)網(wǎng)絡(luò)?神經(jīng)網(wǎng)絡(luò)的核心思想是模仿生物神經(jīng)系統(tǒng)的結(jié)構(gòu),特別是大腦中神經(jīng)
    的頭像 發(fā)表于 12-17 15:05 ?281次閱讀
    <b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>的初步認(rèn)識(shí)

    CNN卷積神經(jīng)網(wǎng)絡(luò)設(shè)計(jì)原理及在MCU200T上仿真測試

    數(shù)的提出很大程度的解決了BP算法在優(yōu)化深層神經(jīng)網(wǎng)絡(luò)時(shí)的梯度耗散問題。當(dāng)x&gt;0 時(shí),梯度恒為1,無梯度耗散問題,收斂快;當(dāng)x&lt;0 時(shí),該層的輸出為0。 CNN
    發(fā)表于 10-29 07:49

    NMSIS神經(jīng)網(wǎng)絡(luò)庫使用介紹

    NMSIS NN 軟件庫是一組高效的神經(jīng)網(wǎng)絡(luò)內(nèi)核,旨在最大限度地提高 Nuclei N 處理器內(nèi)核上的神經(jīng)網(wǎng)絡(luò)的性能并最??大限度地減少其內(nèi)存占用。 該庫分為多個(gè)功能,每個(gè)功能涵蓋特定類別
    發(fā)表于 10-29 06:08

    在Ubuntu20.04系統(tǒng)中訓(xùn)練神經(jīng)網(wǎng)絡(luò)模型的一些經(jīng)驗(yàn)

    , batch_size=512, epochs=20)總結(jié) 這個(gè)核心算法中的卷積神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)和訓(xùn)練過程,是用來對(duì)MNIST手寫數(shù)字圖像進(jìn)行分類的。模型將圖像作為輸入,通過卷積和池化層提取圖像的特征,然后通過全連接層進(jìn)行分類預(yù)測。訓(xùn)練過程中,模型通過最小化損失函數(shù)來優(yōu)化
    發(fā)表于 10-22 07:03

    CICC2033神經(jīng)網(wǎng)絡(luò)部署相關(guān)操作

    在完成神經(jīng)網(wǎng)絡(luò)量化后,需要將神經(jīng)網(wǎng)絡(luò)部署到硬件加速器上。首先需要將所有權(quán)重?cái)?shù)據(jù)以及輸入數(shù)據(jù)導(dǎo)入到存儲(chǔ)器內(nèi)。 在仿真環(huán)境下,可將其存于一個(gè)文件,并在 Verilog 代碼中通過 readmemh 函數(shù)
    發(fā)表于 10-20 08:00

    液態(tài)神經(jīng)網(wǎng)絡(luò)(LNN):時(shí)間連續(xù)性與動(dòng)態(tài)適應(yīng)性的神經(jīng)網(wǎng)絡(luò)

    1.算法簡介液態(tài)神經(jīng)網(wǎng)絡(luò)(LiquidNeuralNetworks,LNN)是一種新型的神經(jīng)網(wǎng)絡(luò)架構(gòu),其設(shè)計(jì)理念借鑒自生物神經(jīng)系統(tǒng),特別是秀麗隱桿線蟲的
    的頭像 發(fā)表于 09-28 10:03 ?1130次閱讀
    液態(tài)<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>(LNN):時(shí)間連續(xù)性與動(dòng)態(tài)適應(yīng)性的<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>

    神經(jīng)網(wǎng)絡(luò)的并行計(jì)算與加速技術(shù)

    隨著人工智能技術(shù)的飛速發(fā)展,神經(jīng)網(wǎng)絡(luò)在眾多領(lǐng)域展現(xiàn)出了巨大的潛力和廣泛的應(yīng)用前景。然而,神經(jīng)網(wǎng)絡(luò)模型的復(fù)雜度和規(guī)模也在不斷增加,這使得傳統(tǒng)的串行計(jì)算方式面臨著巨大的挑戰(zhàn),如計(jì)算速度慢、訓(xùn)練時(shí)間長等
    的頭像 發(fā)表于 09-17 13:31 ?1096次閱讀
    <b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>的并行計(jì)算與加速技術(shù)

    基于神經(jīng)網(wǎng)絡(luò)的數(shù)字預(yù)失真模型解決方案

    在基于神經(jīng)網(wǎng)絡(luò)的數(shù)字預(yù)失真(DPD)模型中,使用不同的激活函數(shù)對(duì)整個(gè)系統(tǒng)性能和能效有何影響?
    的頭像 發(fā)表于 08-29 14:01 ?3438次閱讀

    無刷電機(jī)小波神經(jīng)網(wǎng)絡(luò)轉(zhuǎn)子位置檢測方法的研究

    摘要:論文通過對(duì)無刷電機(jī)數(shù)學(xué)模型的推導(dǎo),得出轉(zhuǎn)角:與三相相電壓之間存在映射關(guān)系,因此構(gòu)建了一個(gè)以三相相電壓為輸人,轉(zhuǎn)角為輸出的小波神經(jīng)網(wǎng)絡(luò)來實(shí)現(xiàn)轉(zhuǎn)角預(yù)測,并采用改進(jìn)遺傳算法來訓(xùn)練網(wǎng)絡(luò)結(jié)構(gòu)與參數(shù),借助
    發(fā)表于 06-25 13:06

    神經(jīng)網(wǎng)絡(luò)專家系統(tǒng)在電機(jī)故障診斷中的應(yīng)用

    的診斷誤差。仿真結(jié)果驗(yàn)證了該算法的有效性。 純分享帖,需要者可點(diǎn)擊附件免費(fèi)獲取完整資料~~~*附件:神經(jīng)網(wǎng)絡(luò)專家系統(tǒng)在電機(jī)故障診斷中的應(yīng)用.pdf【免責(zé)聲明】本文系網(wǎng)絡(luò)轉(zhuǎn)載,版權(quán)歸原作者所有。本文所用視頻、圖片、文字如涉及作品版
    發(fā)表于 06-16 22:09

    神經(jīng)網(wǎng)絡(luò)RAS在異步電機(jī)轉(zhuǎn)速估計(jì)中的仿真研究

    眾多方法中,由于其結(jié)構(gòu)簡單,穩(wěn)定性好廣泛受到人們的重視,且已被用于產(chǎn)品開發(fā)。但是MRAS仍存在在低速區(qū)速度估計(jì)精度下降和對(duì)電動(dòng)機(jī)參數(shù)變化非常敏感的問題。本文利用神經(jīng)網(wǎng)絡(luò)的特點(diǎn),使估計(jì)更為簡單、快速
    發(fā)表于 06-16 21:54

    基于FPGA搭建神經(jīng)網(wǎng)絡(luò)的步驟解析

    本文的目的是在一個(gè)神經(jīng)網(wǎng)絡(luò)已經(jīng)通過python或者M(jìn)ATLAB訓(xùn)練好的神經(jīng)網(wǎng)絡(luò)模型,將訓(xùn)練好的模型的權(quán)重和偏置文件以TXT文件格式導(dǎo)出,然后通過python程序?qū)xt文件轉(zhuǎn)化為coe文件,(coe
    的頭像 發(fā)表于 06-03 15:51 ?1140次閱讀
    基于FPGA搭建<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>的步驟解析

    AI神經(jīng)網(wǎng)絡(luò)降噪算法在語音通話產(chǎn)品中的應(yīng)用優(yōu)勢(shì)與前景分析

    隨著人工智能技術(shù)的快速發(fā)展,AI神經(jīng)網(wǎng)絡(luò)降噪算法在語音通話產(chǎn)品中的應(yīng)用正逐步取代傳統(tǒng)降噪技術(shù),成為提升語音質(zhì)量的關(guān)鍵解決方案。相比傳統(tǒng)DSP(數(shù)字信號(hào)處理)降噪,AI降噪具有更強(qiáng)的環(huán)境適應(yīng)能力、更高
    的頭像 發(fā)表于 05-16 17:07 ?1464次閱讀
    AI<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>降噪<b class='flag-5'>算法</b>在語音通話產(chǎn)品中的應(yīng)用優(yōu)勢(shì)與前景分析

    NVIDIA實(shí)現(xiàn)神經(jīng)網(wǎng)絡(luò)渲染技術(shù)的突破性增強(qiáng)功能

    近日,NVIDIA 宣布了 NVIDIA RTX 神經(jīng)網(wǎng)絡(luò)渲染技術(shù)的突破性增強(qiáng)功能。NVIDIA 與微軟合作,將在 4 月的 Microsoft DirectX 預(yù)覽版中增加神經(jīng)網(wǎng)絡(luò)著色技術(shù),讓開
    的頭像 發(fā)表于 04-07 11:33 ?1126次閱讀

    神經(jīng)網(wǎng)絡(luò)壓縮框架 (NNCF) 中的過濾器修剪統(tǒng)計(jì)數(shù)據(jù)怎么查看?

    無法觀察神經(jīng)網(wǎng)絡(luò)壓縮框架 (NNCF) 中的過濾器修剪統(tǒng)計(jì)數(shù)據(jù)
    發(fā)表于 03-06 07:10