chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

盤點史上最全的Python算法集

電子工程師 ? 來源:cc ? 2019-02-21 10:04 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

本文是一些機器人算法(特別是自動導航算法)的Python代碼合集。

其主要特點有以下三點:選擇了在實踐中廣泛應用的算法;依賴最少;容易閱讀,容易理解每個算法的基本思想。希望閱讀本文后能對你有所幫助。

前排友情提示,文章較長,建議收藏后再看。

目錄

環(huán)境需求

怎樣使用

本地化

擴展卡爾曼濾波本地化

無損卡爾曼濾波本地化

粒子濾波本地化

直方圖濾波本地化

映射

高斯網格映射

光線投射網格映射

k均值物體聚類

圓形擬合物體形狀識別

SLAM

迭代最近點匹配

EKF SLAM

FastSLAM 1.0

FastSLAM 2.0

基于圖的SLAM

路徑規(guī)劃

動態(tài)窗口方式

基于網格的搜索

迪杰斯特拉算法

A*算法

勢場算法

模型預測路徑生成

路徑優(yōu)化示例

查找表生成示例

狀態(tài)晶格規(guī)劃

均勻極性采樣(Uniform polar sampling)

偏差極性采樣(Biased polar sampling)

路線采樣(Lane sampling)

隨機路徑圖(PRM)規(guī)劃

Voronoi路徑圖規(guī)劃

快速搜索隨機樹(RRT)

基本RRT

RRT*

基于Dubins路徑的RRT

基于Dubins路徑的RRT*

基于reeds-shepp路徑的RRT*

Informed RRT*

批量Informed RRT*

三次樣條規(guī)劃

B樣條規(guī)劃

貝濟埃路徑規(guī)劃

五次多項式規(guī)劃

Dubins路徑規(guī)劃

Reeds Shepp路徑規(guī)劃

基于LQR的路徑規(guī)劃

Frenet Frame中的最優(yōu)路徑

路徑跟蹤

純追跡跟蹤

史坦利控制

后輪反饋控制

線性二次regulator(LQR)轉向控制

線性二次regulator(LQR)轉向和速度控制

項目支持

環(huán)境需求

Python 3.6.x

numpy

scipy

matplotlib

pandas

cvxpy 0.4.x

怎樣使用

安裝必要的庫;

克隆本代碼倉庫;

執(zhí)行每個目錄下的python腳本;

如果你喜歡,則收藏本代碼庫:)

本地化

擴展卡爾曼濾波本地化

該算法利用擴展卡爾曼濾波器(Extended Kalman Filter, EKF)實現(xiàn)傳感器混合本地化。

藍線為真實路徑,黑線為導航推測路徑(dead reckoning trajectory),綠點為位置觀測(如GPS),紅線為EKF估算的路徑。

紅色橢圓為EKF估算的協(xié)方差。

相關閱讀:

概率機器人學

http://www.probabilistic-robotics.org/

無損卡爾曼濾波本地化

該算法利用無損卡爾曼濾波器(Unscented Kalman Filter, UKF)實現(xiàn)傳感器混合本地化。

線和點的含義與EKF模擬的例子相同。

相關閱讀:

利用無差別訓練過的無損卡爾曼濾波進行機器人移動本地化

https://www.researchgate.net/publication/267963417_Discriminatively_Trained_Unscented_Kalman_Filter_for_Mobile_Robot_Localization

粒子濾波本地化

該算法利用粒子濾波器(Particle Filter, PF)實現(xiàn)傳感器混合本地化。

藍線為真實路徑,黑線為導航推測路徑(dead reckoning trajectory),綠點為位置觀測(如GPS),紅線為PF估算的路徑。

該算法假設機器人能夠測量與地標(RFID)之間的距離。

PF本地化會用到該測量結果。

相關閱讀:

概率機器人學

http://www.probabilistic-robotics.org/

直方圖濾波本地化

該算法是利用直方圖濾波器(Histogram filter)實現(xiàn)二維本地化的例子。

紅十字是實際位置,黑點是RFID的位置。

藍色格子是直方圖濾波器的概率位置。

在該模擬中,x,y是未知數(shù),yaw已知。

濾波器整合了速度輸入和從RFID獲得距離觀測數(shù)據(jù)進行本地化。

不需要初始位置。

相關閱讀:

概率機器人學

http://www.probabilistic-robotics.org/

映射

高斯網格映射

本算法是二維高斯網格映射(Gaussian grid mapping)的例子。

光線投射網格映射

本算法是二維光線投射網格映射(Ray casting grid map)的例子。

k均值物體聚類

本算法是使用k均值算法進行二維物體聚類的例子。

圓形擬合物體形狀識別

本算法是使用圓形擬合進行物體形狀識別的例子。

藍圈是實際的物體形狀。

紅叉是通過距離傳感器觀測到的點。

紅圈是使用圓形擬合估計的物體形狀。

SLAM

同時本地化和映射(Simultaneous Localization and Mapping,SLAM)的例子。

迭代最近點匹配

本算法是使用單值解構進行二維迭代最近點(Iterative Closest Point,ICP)匹配的例子。

它能計算從一些點到另一些點的旋轉矩陣和平移矩陣。

相關閱讀:

機器人運動介紹:迭代最近點算法

https://cs.gmu.edu/~kosecka/cs685/cs685-icp.pdf

EKF SLAM

這是基于擴展卡爾曼濾波的SLAM示例。

藍線是真實路徑,黑線是導航推測路徑,紅線是EKF SLAM估計的路徑。

綠叉是估計的地標。

相關閱讀:

概率機器人學

http://www.probabilistic-robotics.org/

FastSLAM 1.0

這是用FastSLAM 1.0進行基于特征的SLAM的示例。

藍線是實際路徑,黑線是導航推測,紅線是FastSLAM的推測路徑。

紅點是FastSLAM中的粒子。

黑點是地標,藍叉是FastLSAM估算的地標位置。

相關閱讀:

概率機器人學

http://www.probabilistic-robotics.org/

FastSLAM 2.0

這是用FastSLAM 2.0進行基于特征的SLAM的示例。

動畫的含義與FastSLAM 1.0的情況相同。

相關閱讀:

概率機器人學

http://www.probabilistic-robotics.org/

Tim Bailey的SLAM模擬

http://www-personal.acfr.usyd.edu.au/tbailey/software/slam_simulations.htm

基于圖的SLAM

這是基于圖的SLAM的示例。

藍線是實際路徑。

黑線是導航推測路徑。

紅線是基于圖的SLAM估算的路徑。

黑星是地標,用于生成圖的邊。

相關閱讀:

基于圖的SLAM入門

http://www2.informatik.uni-freiburg.de/~stachnis/pdf/grisetti10titsmag.pdf

路徑規(guī)劃

動態(tài)窗口方式

這是使用動態(tài)窗口方式(Dynamic Window Approach)進行二維導航的示例代碼。

相關閱讀:

用動態(tài)窗口方式避免碰撞

https://www.ri.cmu.edu/pub_files/pub1/fox_dieter_1997_1/fox_dieter_1997_1.pdf

基于網格的搜索

迪杰斯特拉算法

這是利用迪杰斯特拉(Dijkstra)算法實現(xiàn)的基于二維網格的最短路徑規(guī)劃。

動畫中青色點為搜索過的節(jié)點。

A*算法

下面是使用A星算法進行基于二維網格的最短路徑規(guī)劃。

動畫中青色點為搜索過的節(jié)點。

啟發(fā)算法為二維歐幾里得距離。

勢場算法

下面是使用勢場算法進行基于二維網格的路徑規(guī)劃。

動畫中藍色的熱區(qū)圖顯示了每個格子的勢能。

相關閱讀:

機器人運動規(guī)劃:勢能函數(shù)

https://www.cs.cmu.edu/~motionplanning/lecture/Chap4-Potential-Field_howie.pdf

模型預測路徑生成

下面是模型預測路徑生成的路徑優(yōu)化示例。

算法用于狀態(tài)晶格規(guī)劃(state lattice planning)。

路徑優(yōu)化示例

查找表生成示例

相關閱讀:

用于帶輪子的機器人的最優(yōu)不平整地形路徑生成

http://journals.sagepub.com/doi/pdf/10.1177/0278364906075328

狀態(tài)晶格規(guī)劃

這個腳本使用了狀態(tài)晶格規(guī)劃(state lattice planning)實現(xiàn)路徑規(guī)劃。

這段代碼通過模型預測路徑生成來解決邊界問題。

相關閱讀:

用于帶輪子的機器人的最優(yōu)不平整地形路徑生成

http://journals.sagepub.com/doi/pdf/10.1177/0278364906075328

用于復雜環(huán)境下的高性能運動機器人導航的可行運動的狀態(tài)空間采樣

http://www.frc.ri.cmu.edu/~alonzo/pubs/papers/JFR_08_SS_Sampling.pdf

均勻極性采樣(Uniform polar sampling)

偏差極性采樣(Biased polar sampling)

路線采樣(Lane sampling)

隨機路徑圖(PRM)規(guī)劃

這個隨機路徑圖(Probabilistic Road-Map,PRM)規(guī)劃算法在圖搜索上采用了迪杰斯特拉方法。

動畫中的藍點為采樣點。

青色叉為迪杰斯特拉方法搜索過的點。

紅線為PRM的最終路徑。

相關閱讀:

隨機路徑圖

https://en.wikipedia.org/wiki/Probabilistic_roadmap

Voronoi路徑圖規(guī)劃

這個Voronoi路徑圖(Probabilistic Road-Map,PRM)規(guī)劃算法在圖搜索上采用了迪杰斯特拉方法。

動畫中的藍點為Voronoi點。

青色叉為迪杰斯特拉方法搜索過的點。

紅線為Voronoi路徑圖的最終路徑。

相關閱讀:

機器人運動規(guī)劃

https://www.cs.cmu.edu/~motionplanning/lecture/Chap5-RoadMap-Methods_howie.pdf

快速搜索隨機樹(RRT)

基本RRT

這是個使用快速搜索隨機樹(Rapidly-Exploring Random Trees,RRT)的簡單路徑規(guī)劃代碼。

黑色圓為障礙物,綠線為搜索樹,紅叉為開始位置和目標位置。

RRT*

這是使用RRT*的路徑規(guī)劃代碼。

黑色圓為障礙物,綠線為搜索樹,紅叉為開始位置和目標位置。

相關閱讀:

最優(yōu)運動規(guī)劃的基于增量采樣的算法

https://arxiv.org/abs/1005.0416

最優(yōu)運動規(guī)劃的基于采樣的算法

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.419.5503&rep=rep1&type=pdf

基于Dubins路徑的RRT

為汽車形機器人提供的使用RRT和dubins路徑規(guī)劃的路徑規(guī)劃算法。

基于Dubins路徑的RRT*

為汽車形機器人提供的使用RRT*和dubins路徑規(guī)劃的路徑規(guī)劃算法。

基于reeds-shepp路徑的RRT*

為汽車形機器人提供的使用RRT*和reeds shepp路徑規(guī)劃的路徑規(guī)劃算法。

Informed RRT*

這是使用Informed RRT*的路徑規(guī)劃代碼。

青色橢圓為Informed RRT*的啟發(fā)采樣域。

相關閱讀:

Informed RRT*:通過對可接受的橢球啟發(fā)的直接采樣實現(xiàn)最優(yōu)的基于采樣的路徑規(guī)劃

https://arxiv.org/pdf/1404.2334.pdf

批量Informed RRT*

這是使用批量Informed RRT*的路徑規(guī)劃代碼。

相關閱讀:

批量Informed樹(BIT*):通過對隱含隨機幾何圖形進行啟發(fā)式搜索實現(xiàn)基于采樣的最優(yōu)規(guī)劃

https://arxiv.org/abs/1405.5848

閉合回路RRT*

使用閉合回路RRT*(Closed loop RRT*)實現(xiàn)的基于車輛模型的路徑規(guī)劃。

這段代碼里,轉向控制用的是純追跡算法(pure-pursuit algorithm)。

速度控制采用了PID。

相關閱讀:

使用閉合回路預測在復雜環(huán)境內實現(xiàn)運動規(guī)劃

http://acl.mit.edu/papers/KuwataGNC08.pdf)

應用于自動城市駕駛的實時運動規(guī)劃

http://acl.mit.edu/papers/KuwataTCST09.pdf

[1601.06326]采用閉合回路預測實現(xiàn)最優(yōu)運動規(guī)劃的基于采樣的算法

https://arxiv.org/abs/1601.06326

LQR-RRT*

這是個使用LQR-RRT*的路徑規(guī)劃模擬。

LQR局部規(guī)劃采用了雙重積分運動模型。

相關閱讀:

LQR-RRT*:使用自動推導擴展啟發(fā)實現(xiàn)最優(yōu)基于采樣的運動規(guī)劃

http://lis.csail.mit.edu/pubs/perez-icra12.pdf

MahanFathi/LQR-RRTstar:LQR-RRT*方法用于單擺相位中的隨機運動規(guī)劃

https://github.com/MahanFathi/LQR-RRTstar

三次樣條規(guī)劃

這是段三次路徑規(guī)劃的示例代碼。

這段代碼根據(jù)x-y的路點,利用三次樣條生成一段曲率連續(xù)的路徑。

每個點的指向角度也可以用解析的方式計算。

B樣條規(guī)劃

這是段使用B樣條曲線進行規(guī)劃的例子。

輸入路點,它會利用B樣條生成光滑的路徑。

第一個和最后一個路點位于最后的路徑上。

相關閱讀:

B樣條

https://en.wikipedia.org/wiki/B-spline

Eta^3樣條路徑規(guī)劃

這是使用Eta ^ 3樣條曲線的路徑規(guī)劃。

相關閱讀:

eta^3-Splines for the Smooth Path Generation of Wheeled Mobile Robots

https://ieeexplore.ieee.org/document/4339545/

貝濟埃路徑規(guī)劃

貝濟埃路徑規(guī)劃的示例代碼。

根據(jù)四個控制點生成貝濟埃路徑。

改變起點和終點的偏移距離,可以生成不同的貝濟埃路徑:

相關閱讀:

根據(jù)貝濟埃曲線為自動駕駛汽車生成曲率連續(xù)的路徑

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.294.6438&rep=rep1&type=pdf

五次多項式規(guī)劃

利用五次多項式進行路徑規(guī)劃。

它能根據(jù)五次多項式計算二維路徑、速度和加速度。

相關閱讀:

用于Agv In定位的局部路徑規(guī)劃和運動控制

http://ieeexplore.ieee.org/document/637936/

Dubins路徑規(guī)劃

Dubins路徑規(guī)劃的示例代碼。

相關閱讀:

Dubins路徑

https://en.wikipedia.org/wiki/Dubins_path

Reeds Shepp路徑規(guī)劃

Reeds Shepp路徑規(guī)劃的示例代碼。

相關閱讀:

15.3.2 Reeds-Shepp曲線

http://planning.cs.uiuc.edu/node822.html

用于能前進和后退的汽車的最優(yōu)路徑

https://pdfs.semanticscholar.org/932e/c495b1d0018fd59dee12a0bf74434fac7af4.pdf

ghliu/pyReedsShepp:實現(xiàn)Reeds Shepp曲線

https://github.com/ghliu/pyReedsShepp

基于LQR的路徑規(guī)劃

為雙重積分模型使用基于LQR的路徑規(guī)劃的示例代碼。

Frenet Frame中的最優(yōu)路徑

這段代碼在Frenet Frame中生成最優(yōu)路徑。

青色線為目標路徑,黑色叉為障礙物。

紅色線為預測的路徑。

相關閱讀:

Frenet Frame中的動態(tài)接到場景中的最優(yōu)路徑生成

https://www.researchgate.net/profile/Moritz_Werling/publication/224156269_Optimal_Trajectory_Generation_for_Dynamic_Street_Scenarios_in_a_Frenet_Frame/links/54f749df0cf210398e9277af.pdf

Frenet Frame中的動態(tài)接到場景中的最優(yōu)路徑生成

https://www.youtube.com/watch?v=Cj6tAQe7UCY

路徑跟蹤

姿勢控制跟蹤

這是姿勢控制跟蹤的模擬。

相關閱讀:

Robotics, Vision and Control - Fundamental Algorithms In MATLAB? Second, Completely Revised, Extended And Updated Edition | Peter Corke | Springer

https://www.springer.com/us/book/9783319544120

純追跡跟蹤

使用純追跡(pure pursuit)轉向控制和PID速度控制的路徑跟蹤模擬。

紅線為目標路線,綠叉為純追跡控制的目標點,藍線為跟蹤路線。

相關閱讀:

城市中的自動駕駛汽車的運動規(guī)劃和控制技術的調查

https://arxiv.org/abs/1604.07446

史坦利控制

使用史坦利(Stanley)轉向控制和PID速度控制的路徑跟蹤模擬。

相關閱讀:

史坦利:贏得DARPA大獎賽的機器人

http://robots.stanford.edu/papers/thrun.stanley05.pdf

用于自動駕駛機動車路徑跟蹤的自動轉向方法

https://www.ri.cmu.edu/pub_files/2009/2/Automatic_Steering_Methods_for_Autonomous_Automobile_Path_Tracking.pdf

后輪反饋控制

利用后輪反饋轉向控制和PID速度控制的路徑跟蹤模擬。

相關閱讀:

城市中的自動駕駛汽車的運動規(guī)劃和控制技術的調查

https://arxiv.org/abs/1604.07446

線性二次regulator(LQR)轉向控制

使用LQR轉向控制和PID速度控制的路徑跟蹤模擬。

相關閱讀:

ApolloAuto/apollo:開源自動駕駛平臺

https://github.com/ApolloAuto/apollo

線性二次regulator(LQR)轉向和速度控制

使用LQR轉向和速度控制的路徑跟蹤模擬。

相關閱讀:

完全自動駕駛:系統(tǒng)和算法 - IEEE會議出版物

http://ieeexplore.ieee.org/document/5940562/

模型預測速度和轉向控制

使用迭代線性模型預測轉向和速度控制的路徑跟蹤模擬。

這段代碼使用了cxvxpy作為最優(yōu)建模工具。

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 算法
    +關注

    關注

    23

    文章

    4780

    瀏覽量

    97945
  • python
    +關注

    關注

    57

    文章

    4869

    瀏覽量

    89934

原文標題:這可能是史上最全的Python算法集!

文章出處:【微信號:rgznai100,微信公眾號:rgznai100】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關推薦
    熱點推薦

    RFID盤點vs傳統(tǒng)人工盤點:企業(yè)庫存盤不準?選對工具是關鍵!

    傳統(tǒng)庫存盤點耗時耗力還不準?RFID手持機帶你告別Excel人工對賬,無需對準、批量識別、隔箱讀取,4步完成倉庫盤點,效率提升10倍以上!本文詳解 RFID 手持機盤點流程、適用場景及核心優(yōu)勢,助力企業(yè)實現(xiàn)庫存可視化管理,提升現(xiàn)
    的頭像 發(fā)表于 12-31 14:01 ?238次閱讀
    RFID<b class='flag-5'>盤點</b>vs傳統(tǒng)人工<b class='flag-5'>盤點</b>:企業(yè)庫存盤不準?選對工具是關鍵!

    沒有專利的opencv-python 版本

    所有 官方發(fā)布的 opencv-python 核心版本(無 contrib 擴展)都無專利風險——專利問題僅存在于 opencv-contrib-python 擴展模塊中的少數(shù)算法(如早期 SIFT
    發(fā)表于 12-13 12:37

    資產盤點 “跑斷腿”?RFID 無感盤點,1 天搞定全廠區(qū)

    資產盤點不是 “走過場”,而是摸清家底、降本增效的關鍵。RFID 無感盤點的價值,不止是 “1 天搞定全廠區(qū)” 的效率飛躍,更讓資產管理從 “事后核對” 變成 “實時可控”。
    的頭像 發(fā)表于 11-18 10:46 ?351次閱讀
    資產<b class='flag-5'>盤點</b> “跑斷腿”?RFID 無感<b class='flag-5'>盤點</b>,1 天搞定全廠區(qū)

    SimData:基于aiSim的高保真虛擬數(shù)據(jù)生成方案

    01前言在自動駕駛感知系統(tǒng)的研發(fā)過程中,模型的性能高度依賴于大規(guī)模、高質量的感知數(shù)據(jù)。目前業(yè)界常用的數(shù)據(jù)包括KITTI、nuScenes、WaymoOpenDataset等,它們?yōu)樽詣玉{駛算法的發(fā)展奠定了重要基礎。然而,構建
    的頭像 發(fā)表于 11-07 17:35 ?5340次閱讀
    SimData:基于aiSim的高保真虛擬數(shù)據(jù)<b class='flag-5'>集</b>生成方案

    倉庫盤點誤差大總出錯,咋整?試試智能盤點解決方法

    倉庫盤點頻繁賬實不符?人工盤點誤差高、效率低,還吃掉利潤?RFID 智能盤點技術幫你解決!可以在2-25 米遠距離批量讀寫,庫存準確率飆升 99%+,盤點時間縮短一半,適配倉儲物流、制
    的頭像 發(fā)表于 11-05 11:56 ?376次閱讀
    倉庫<b class='flag-5'>盤點</b>誤差大總出錯,咋整?試試智能<b class='flag-5'>盤點</b>解決方法

    RISCV-K指令擴展分享

    RISC-V K擴展指的是RISC-V用于提升密碼學算法的速度、減小應用程序大小的一個擴展指令。主要包含了:AES加密算法的加速指令、SHA算法的加速指令,SM3、SM4
    發(fā)表于 10-23 06:12

    RFID標簽在庫存盤點中的應用

    RFID技術在庫存盤點中的應用正變得越來越廣泛,其通過無線電信號識別特定目標并讀取相關數(shù)據(jù)的能力,極大地提高了庫存管理的效率與準確性。以下是RFID標簽在庫存盤點中的一些具體應用和優(yōu)勢:1.快速盤點
    的頭像 發(fā)表于 09-03 15:42 ?614次閱讀
    RFID標簽在庫存<b class='flag-5'>盤點</b>中的應用

    盤點嵌入式就業(yè)所需要的技能有哪些?

    ,把握未來的職業(yè)機遇。 1.智能汽車行業(yè): - 熟悉嵌入式編程語言,如C/C++、Python等。 - 掌握嵌入式系統(tǒng)設計與開發(fā)流程,了解汽車電子控制系統(tǒng)的基本原理。 - 具備良好的數(shù)據(jù)結構和算法
    發(fā)表于 08-11 15:43

    python app不能運行怎么解決?

    ;python_agent[1241]: xmlrpc request method supervisor.stopProcess failed;python_agent[1241]: xmlrpc request method supervisor.stopProces
    發(fā)表于 08-06 06:27

    精準盤點,無憂管理——RFID智能盤點終端解析

    RFID智能盤點終端高效、精準,利用RFID技術實現(xiàn)快速批量識別,實時更新數(shù)據(jù),確保庫存信息準確無誤。其輕便易攜設計及簡潔操作界面使盤點工作輕松便捷。此外,該終端具有高可靠性,適用于各種環(huán)境,為企業(yè)帶來高效、精準的盤點體驗。
    的頭像 發(fā)表于 07-14 14:17 ?546次閱讀

    RS485線器選購指南:2025主流通信轉換設備品牌盤點與應用方案解析

    RS485線器選購指南:2025主流通信轉換設備品牌盤點與應用方案解析 隨著工業(yè)自動化和物聯(lián)網的快速發(fā)展,RS485線器作為一種可靠的串行通信設備,在各種工業(yè)場景中得到了廣泛應用。2025年
    的頭像 發(fā)表于 06-12 11:04 ?1215次閱讀

    FPC標簽在盤點中的應用

    RFID是一種通過無線電信號識別特定目標并讀取相關數(shù)據(jù)的技術。與傳統(tǒng)的條形碼技術相比,RFID技術具有顯著的優(yōu)勢,如遠距離讀取、存儲更多信息以及更高的準確性和可靠性RFID在庫存盤點中的具體應用1.
    的頭像 發(fā)表于 05-09 15:21 ?550次閱讀
    FPC標簽在<b class='flag-5'>盤點</b>中的應用

    芯擎科技發(fā)布史上最全座艙和智駕解決方案,開啟“大生態(tài)”模式

    2025年3月27日,芯擎科技在南京舉辦“擎隨芯動,智融萬象”2025芯擎·生態(tài)科技日,隆重發(fā)布史上最全智能座艙、智能駕駛兩大系列解決方案,開啟“大生態(tài)”合作模式,與全球合作伙伴共建更開放的繁榮生態(tài),為智駕平權、安全平權賦能。
    的頭像 發(fā)表于 03-28 15:43 ?2107次閱讀
    芯擎科技發(fā)布<b class='flag-5'>史上</b><b class='flag-5'>最全</b>座艙和智駕解決方案,開啟“大生態(tài)”模式

    零基礎入門:如何在樹莓派上編寫和運行Python程序?

    在這篇文章中,我將為你簡要介紹Python程序是什么、Python程序可以用來做什么,以及如何在RaspberryPi上編寫和運行一個簡單的Python程序。什么是Python程序?
    的頭像 發(fā)表于 03-25 09:27 ?1973次閱讀
    零基礎入門:如何在樹莓派上編寫和運行<b class='flag-5'>Python</b>程序?

    特工控機特點大盤點?。。。?/a>

    特(GITSTAR)是國內知名的工控機品牌,專注于工業(yè)計算機的研發(fā)、生產和銷售,其產品以高性能、高可靠性、高穩(wěn)定性和廣泛的應用場景著稱。以下是關于特工控機的綜合評價: 1、?產品特點 高性能
    的頭像 發(fā)表于 02-24 17:34 ?934次閱讀