chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內(nèi)不再提示

神經(jīng)網(wǎng)絡中最經(jīng)典的RNN模型介紹

Dbwd_Imgtec ? 來源:人工智能與算法學習 ? 作者:人工智能與算法學 ? 2021-05-10 10:22 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

神經(jīng)網(wǎng)絡深度學習的載體,而神經(jīng)網(wǎng)絡模型中,最經(jīng)典非RNN模型所屬,盡管它不完美,但它具有學習歷史信息的能力。后面不管是encode-decode 框架,還是注意力模型,以及自注意力模型,以及更加強大的Bert模型家族,都是站在RNN的肩上,不斷演化、變強的。

這篇文章,闡述了RNN的方方面面,包括模型結構,優(yōu)缺點,RNN模型的幾種應用,RNN常使用的激活函數(shù),RNN的缺陷,以及GRU,LSTM是如何試圖解決這些問題,RNN變體等。

這篇文章最大特點是圖解版本,其次語言簡練,總結全面。

概述

傳統(tǒng)RNN的體系結構。Recurrent neural networks,也稱為RNNs,是一類允許先前的輸出用作輸入,同時具有隱藏狀態(tài)的神經(jīng)網(wǎng)絡。它們通常如下所示:

7fe7268e-b0f0-11eb-bf61-12bb97331649.png

對于每一時步, 激活函數(shù) ,輸出被表達為:

7ff32b82-b0f0-11eb-bf61-12bb97331649.png

7fff71c6-b0f0-11eb-bf61-12bb97331649.png

這里8017485a-b0f0-11eb-bf61-12bb97331649.png是時間維度網(wǎng)絡的共享權重系數(shù) ?是激活函數(shù)

8020a5d0-b0f0-11eb-bf61-12bb97331649.png

下表總結了典型RNN架構的優(yōu)缺點:

處理任意長度的輸入 計算速度慢
模型形狀不隨輸入長度增加 難以獲取很久以前的信息
計算考慮了歷史信息 無法考慮當前狀態(tài)的任何未來輸入
權重隨時間共享
優(yōu)點 缺點

RNNs應用

RNN模型主要應用于自然語言處理和語音識別領域。下表總結了不同的應用:

1對1

802ca506-b0f0-11eb-bf61-12bb97331649.png

傳統(tǒng)神經(jīng)網(wǎng)絡
1對多

805de940-b0f0-11eb-bf61-12bb97331649.png

音樂生成
多對1

80695140-b0f0-11eb-bf61-12bb97331649.png

情感分類
多對多

807612c2-b0f0-11eb-bf61-12bb97331649.png

命名實體識別
多對多

8081fa9c-b0f0-11eb-bf61-12bb97331649.png

機器翻譯
RNN 類型 圖解 例子

損失函數(shù) 對于RNN網(wǎng)絡,所有時間步的損失函數(shù) 是根據(jù)每個時間步的損失定義的,如下所示:

808d7aac-b0f0-11eb-bf61-12bb97331649.png

時間反向傳播

在每個時間點進行反向傳播。在時間步,損失相對于權重矩陣的偏導數(shù)表示如下:

8098d26c-b0f0-11eb-bf61-12bb97331649.png

處理長短依賴

常用激活函數(shù)

RNN模塊中最常用的激活函數(shù)描述如下:

80a46d02-b0f0-11eb-bf61-12bb97331649.png

80b0309c-b0f0-11eb-bf61-12bb97331649.png

80d89fc8-b0f0-11eb-bf61-12bb97331649.png

Sigmoid Tanh RELU

梯度消失/爆炸

在RNN中經(jīng)常遇到梯度消失和爆炸現(xiàn)象。之所以會發(fā)生這種情況,是因為很難捕捉到長期的依賴關系,因為乘法梯度可以隨著層的數(shù)量呈指數(shù)遞減/遞增。

梯度修剪 梯度修剪是一種技術,用于執(zhí)行反向傳播時,有時遇到的梯度爆炸問題。通過限制梯度的最大值,這種現(xiàn)象在實踐中得以控制。

81016e4e-b0f0-11eb-bf61-12bb97331649.png

門的類型

為了解決消失梯度問題,在某些類型的RNN中使用特定的門,并且通常有明確的目的。它們通常標注為,等于:

810dd972-b0f0-11eb-bf61-12bb97331649.png

其中,是特定于門的系數(shù),是sigmoid函數(shù)。主要內(nèi)容總結如下表:

更新門 過去對現(xiàn)在有多重要? GRU, LSTM
關聯(lián)門 丟棄過去信息? GRU, LSTM
遺忘門 是不是擦除一個單元? LSTM
輸出門 暴露一個門的多少? LSTM
門的種類 作用 應用

GRU/LSTM Gated Recurrent Unit(GRU)和長-短期記憶單元(LSTM)處理傳統(tǒng)RNNs遇到的消失梯度問題,LSTM是GRU的推廣。下表總結了每種結構的特征方程:

8117f952-b0f0-11eb-bf61-12bb97331649.png

注:符號表示兩個向量之間按元素相乘。

RNN的變體

下表總結了其他常用的RNN模型:

812661c2-b0f0-11eb-bf61-12bb97331649.png

814b70ac-b0f0-11eb-bf61-12bb97331649.png

原文標題:神經(jīng)網(wǎng)絡RNN圖解

文章出處:【微信公眾號:Imagination Tech】歡迎添加關注!文章轉載請注明出處。

責任編輯:haq

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權轉載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內(nèi)容侵權或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴

原文標題:神經(jīng)網(wǎng)絡RNN圖解

文章出處:【微信號:Imgtec,微信公眾號:Imagination Tech】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關推薦
    熱點推薦

    一文讀懂LSTM與RNN:從原理到實戰(zhàn),掌握序列建模核心技術

    在AI領域,文本翻譯、語音識別、股價預測等場景都離不開序列數(shù)據(jù)處理。循環(huán)神經(jīng)網(wǎng)絡RNN)作為最早的序列建模工具,開創(chuàng)了“記憶歷史信息”的先河;而長短期記憶網(wǎng)絡(LSTM)則通過創(chuàng)新設計,突破
    的頭像 發(fā)表于 12-09 13:56 ?469次閱讀
    一文讀懂LSTM與<b class='flag-5'>RNN</b>:從原理到實戰(zhàn),掌握序列建模核心技術

    NMSIS神經(jīng)網(wǎng)絡庫使用介紹

    NMSIS NN 軟件庫是一組高效的神經(jīng)網(wǎng)絡內(nèi)核,旨在最大限度地提高 Nuclei N 處理器內(nèi)核上的神經(jīng)網(wǎng)絡的性能并最??大限度地減少其內(nèi)存占用。 該庫分為多個功能,每個功能涵蓋特定類別
    發(fā)表于 10-29 06:08

    在Ubuntu20.04系統(tǒng)中訓練神經(jīng)網(wǎng)絡模型的一些經(jīng)驗

    本帖欲分享在Ubuntu20.04系統(tǒng)中訓練神經(jīng)網(wǎng)絡模型的一些經(jīng)驗。我們采用jupyter notebook作為開發(fā)IDE,以TensorFlow2為訓練框架,目標是訓練一個手寫數(shù)字識別的神經(jīng)網(wǎng)絡
    發(fā)表于 10-22 07:03

    基于神經(jīng)網(wǎng)絡的數(shù)字預失真模型解決方案

    在基于神經(jīng)網(wǎng)絡的數(shù)字預失真(DPD)模型中,使用不同的激活函數(shù)對整個系統(tǒng)性能和能效有何影響?
    的頭像 發(fā)表于 08-29 14:01 ?3138次閱讀

    無刷電機小波神經(jīng)網(wǎng)絡轉子位置檢測方法的研究

    摘要:論文通過對無刷電機數(shù)學模型的推導,得出轉角:與三相相電壓之間存在映射關系,因此構建了一個以三相相電壓為輸人,轉角為輸出的小波神經(jīng)網(wǎng)絡來實現(xiàn)轉角預測,并采用改進遺傳算法來訓練網(wǎng)絡結構與參數(shù),借助
    發(fā)表于 06-25 13:06

    基于FPGA搭建神經(jīng)網(wǎng)絡的步驟解析

    本文的目的是在一個神經(jīng)網(wǎng)絡已經(jīng)通過python或者MATLAB訓練好的神經(jīng)網(wǎng)絡模型,將訓練好的模型的權重和偏置文件以TXT文件格式導出,然后通過python程序將txt文件轉化為coe
    的頭像 發(fā)表于 06-03 15:51 ?931次閱讀
    基于FPGA搭建<b class='flag-5'>神經(jīng)網(wǎng)絡</b>的步驟解析

    BP神經(jīng)網(wǎng)絡與卷積神經(jīng)網(wǎng)絡的比較

    BP神經(jīng)網(wǎng)絡與卷積神經(jīng)網(wǎng)絡在多個方面存在顯著差異,以下是對兩者的比較: 一、結構特點 BP神經(jīng)網(wǎng)絡 : BP神經(jīng)網(wǎng)絡是一種多層的前饋神經(jīng)網(wǎng)絡
    的頭像 發(fā)表于 02-12 15:53 ?1386次閱讀

    如何優(yōu)化BP神經(jīng)網(wǎng)絡的學習率

    優(yōu)化BP神經(jīng)網(wǎng)絡的學習率是提高模型訓練效率和性能的關鍵步驟。以下是一些優(yōu)化BP神經(jīng)網(wǎng)絡學習率的方法: 一、理解學習率的重要性 學習率決定了模型參數(shù)在每次迭代時更新的幅度。過大的學習率可
    的頭像 發(fā)表于 02-12 15:51 ?1468次閱讀

    BP神經(jīng)網(wǎng)絡的優(yōu)缺點分析

    BP神經(jīng)網(wǎng)絡(Back Propagation Neural Network)作為一種常用的機器學習模型,具有顯著的優(yōu)點,同時也存在一些不容忽視的缺點。以下是對BP神經(jīng)網(wǎng)絡優(yōu)缺點的分析: 優(yōu)點
    的頭像 發(fā)表于 02-12 15:36 ?1641次閱讀

    什么是BP神經(jīng)網(wǎng)絡的反向傳播算法

    BP神經(jīng)網(wǎng)絡的反向傳播算法(Backpropagation Algorithm)是一種用于訓練神經(jīng)網(wǎng)絡的有效方法。以下是關于BP神經(jīng)網(wǎng)絡的反向傳播算法的介紹: 一、基本概念 反向傳播算
    的頭像 發(fā)表于 02-12 15:18 ?1339次閱讀

    BP神經(jīng)網(wǎng)絡與深度學習的關系

    BP神經(jīng)網(wǎng)絡與深度學習之間存在著密切的關系,以下是對它們之間關系的介紹: 一、BP神經(jīng)網(wǎng)絡的基本概念 BP神經(jīng)網(wǎng)絡,即反向傳播神經(jīng)網(wǎng)絡(Ba
    的頭像 發(fā)表于 02-12 15:15 ?1385次閱讀

    BP神經(jīng)網(wǎng)絡的基本原理

    BP神經(jīng)網(wǎng)絡(Back Propagation Neural Network)的基本原理涉及前向傳播和反向傳播兩個核心過程。以下是關于BP神經(jīng)網(wǎng)絡基本原理的介紹: 一、網(wǎng)絡結構 BP
    的頭像 發(fā)表于 02-12 15:13 ?1561次閱讀

    如何訓練BP神經(jīng)網(wǎng)絡模型

    BP(Back Propagation)神經(jīng)網(wǎng)絡是一種經(jīng)典的人工神經(jīng)網(wǎng)絡模型,其訓練過程主要分為兩個階段:前向傳播和反向傳播。以下是訓練BP神經(jīng)網(wǎng)絡
    的頭像 發(fā)表于 02-12 15:10 ?1493次閱讀

    深度學習入門:簡單神經(jīng)網(wǎng)絡的構建與實現(xiàn)

    深度學習中,神經(jīng)網(wǎng)絡是核心模型。今天我們用 Python 和 NumPy 構建一個簡單的神經(jīng)網(wǎng)絡。 神經(jīng)網(wǎng)絡由多個神經(jīng)元組成,
    的頭像 發(fā)表于 01-23 13:52 ?864次閱讀

    人工神經(jīng)網(wǎng)絡的原理和多種神經(jīng)網(wǎng)絡架構方法

    在上一篇文章中,我們介紹了傳統(tǒng)機器學習的基礎知識和多種算法。在本文中,我們會介紹人工神經(jīng)網(wǎng)絡的原理和多種神經(jīng)網(wǎng)絡架構方法,供各位老師選擇。 01 人工
    的頭像 發(fā)表于 01-09 10:24 ?2303次閱讀
    人工<b class='flag-5'>神經(jīng)網(wǎng)絡</b>的原理和多種<b class='flag-5'>神經(jīng)網(wǎng)絡</b>架構方法