chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

用深度學(xué)習(xí)分析電子病歷 進(jìn)行臨床預(yù)測(cè)

Qp2m_ggservicer ? 來源:未知 ? 作者:胡薇 ? 2018-05-15 14:41 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

如今利用機(jī)器學(xué)習(xí)預(yù)測(cè)事態(tài)發(fā)展已經(jīng)非常普遍。我們可以用它預(yù)測(cè)通勤途中的交通狀況,以及將英文翻譯成西班牙語時(shí)需要用到的詞匯。那么,我們是否可以用相同類型的機(jī)器學(xué)習(xí)進(jìn)行臨床預(yù)測(cè)呢?我們認(rèn)為,要做到實(shí)用,預(yù)測(cè)模型必須具備以下兩點(diǎn)特征:

可擴(kuò)展:該預(yù)測(cè)模型要能進(jìn)行多項(xiàng)預(yù)測(cè),得出所有我們想要的信息,并且適用于不同醫(yī)院的系統(tǒng)。鑒于醫(yī)療保健數(shù)據(jù)十分復(fù)雜,需要進(jìn)行大量數(shù)據(jù)處理,這一要求并不容易滿足。

精度高:預(yù)測(cè)結(jié)果需能幫助醫(yī)生關(guān)注真正的問題所在,而不是用誤報(bào)警分散醫(yī)生的注意力。隨著電子病歷逐漸普及,我們正嘗試用其中的數(shù)據(jù)建立更加精準(zhǔn)的預(yù)測(cè)模型。

我們聯(lián)合加州大學(xué)舊金山分校、斯坦福大學(xué)醫(yī)學(xué)院和芝加哥大學(xué)醫(yī)學(xué)院的同事,在《自然》雜志的兄弟期刊——《數(shù)字醫(yī)學(xué)》上發(fā)表了題為《可擴(kuò)展且精準(zhǔn)的深度學(xué)習(xí)與電子健康記錄》的論文。這篇論文對(duì)實(shí)現(xiàn)前文所述的兩個(gè)目標(biāo)有所幫助。

基于脫敏的電子病歷數(shù)據(jù),我們用深度學(xué)習(xí)模型對(duì)住院患者進(jìn)行了廣泛預(yù)測(cè)。值得一提的是,該模型可以直接使用原始數(shù)據(jù),無需人工對(duì)相關(guān)變量進(jìn)行提取、清洗、整理、轉(zhuǎn)換等一系列費(fèi)時(shí)費(fèi)力的操作。合作伙伴在將電子病歷數(shù)據(jù)交給我們之前,先對(duì)其進(jìn)行了脫敏處理。我們也采用了最先進(jìn)的措施保障數(shù)據(jù)安全,包括邏輯分隔、嚴(yán)格的訪問控制,以及靜態(tài)和傳輸中的數(shù)據(jù)加密。

可擴(kuò)展性

電子病歷非常復(fù)雜。以體溫為例,因測(cè)量位置不同(舌頭下方、耳膜或額頭),其往往具有不同含義。而體溫不過是電子病歷眾多參數(shù)中最簡單的之一。此外,各個(gè)衛(wèi)生系統(tǒng)都有一套自己定制的電子病例系統(tǒng),導(dǎo)致各個(gè)醫(yī)院的采集的數(shù)據(jù)大不相同。用機(jī)器學(xué)習(xí)處理這些數(shù)據(jù)之前,需要先將其統(tǒng)一格式?;陂_放的FHIR標(biāo)準(zhǔn),我們構(gòu)建了一套標(biāo)準(zhǔn)格式。

格式統(tǒng)一后,我們就不需要手動(dòng)選擇或調(diào)整相關(guān)變量了。進(jìn)行各項(xiàng)預(yù)測(cè)時(shí),深度學(xué)習(xí)模型會(huì)自動(dòng)掃描過去到現(xiàn)在的所有數(shù)據(jù)點(diǎn),并分析其中哪些數(shù)據(jù)對(duì)預(yù)測(cè)是有價(jià)值的。由于這一過程涉及數(shù)千個(gè)數(shù)據(jù)點(diǎn),我們不得不開發(fā)了一些基于遞歸神經(jīng)網(wǎng)絡(luò)(RNN)和前饋網(wǎng)絡(luò)的新型深度學(xué)習(xí)建模方法。

*我們用時(shí)間線來展示患者電子病歷中的數(shù)據(jù)。為方便說明,我們按行顯示各種類型的臨床數(shù)據(jù),其中每個(gè)數(shù)據(jù)片段都用灰點(diǎn)表示,它們被存儲(chǔ)在FHIR中。FHIR是一種可供任何醫(yī)療機(jī)構(gòu)使用的開放式數(shù)據(jù)標(biāo)準(zhǔn)。深度學(xué)習(xí)模型通過從左往右掃描時(shí)間表,分析患者從圖標(biāo)開頭到現(xiàn)在的住院信息,并據(jù)此進(jìn)行不同類型的預(yù)測(cè)。

就這樣我們?cè)O(shè)計(jì)了一個(gè)計(jì)算機(jī)系統(tǒng),以可擴(kuò)展的方式進(jìn)行預(yù)測(cè),而無需為每項(xiàng)預(yù)測(cè)任務(wù)手動(dòng)制作新的數(shù)據(jù)集。設(shè)置數(shù)據(jù)只是全部工作中的一部分,保證預(yù)測(cè)的準(zhǔn)確性也十分重要。

準(zhǔn)確性

評(píng)估準(zhǔn)確性的最常見方法是受試者工作曲線下面積,它可以有效評(píng)估模型區(qū)分特定未來結(jié)果患者和非特定未來結(jié)果患者的效果。 在這個(gè)度量標(biāo)準(zhǔn)中,1.00代表完美,0.50代表不比隨機(jī)結(jié)果更準(zhǔn)確,也就是說得分越高代表模型越準(zhǔn)確。通過測(cè)試,我們的模型在預(yù)測(cè)患者是否會(huì)在醫(yī)院停留很久時(shí),得分為0.86(傳統(tǒng)邏輯回歸模型的評(píng)分為0.76);預(yù)測(cè)住院病死率時(shí)的得分為0.95(傳統(tǒng)模型的得分為0.86);預(yù)測(cè)出院后意外再住院率時(shí)得分為0.77(傳統(tǒng)模型得分為0.70)。從得分上看,新方法的準(zhǔn)確率提升非常顯著。

我們還用這些模型來確定患者接受的治療,比如醫(yī)生為發(fā)燒、咳嗽的患者開具頭孢曲松和強(qiáng)力霉素,該模型就會(huì)判定患者正在接受肺炎治療。必須強(qiáng)調(diào),該模型并不會(huì)給患者做診斷,它只是收集患者的相關(guān)信號(hào),以及臨床醫(yī)生編寫的治療方案和筆記。因此,它更像是一位優(yōu)秀的聽眾而不是主診醫(yī)生。

深度學(xué)習(xí)模型的可解釋性是我們工作重點(diǎn)之一。每項(xiàng)預(yù)測(cè)的“注意圖”會(huì)展示模型在進(jìn)行該項(xiàng)預(yù)測(cè)時(shí)認(rèn)為重要的那些數(shù)據(jù)點(diǎn)。我將展示一個(gè)例子作為概念驗(yàn)證,并將其視為讓預(yù)測(cè)對(duì)臨床醫(yī)生產(chǎn)生價(jià)值的重要部分。

*患者入院24小時(shí)后,我們使用深度學(xué)習(xí)進(jìn)行預(yù)測(cè)。上圖頂部的時(shí)間表包含了患者幾個(gè)月時(shí)間的歷史數(shù)據(jù),我們將最近的數(shù)據(jù)做了放大顯示。模型用紅色標(biāo)識(shí)了患者信息圖表中用于“解釋”其預(yù)測(cè)的信息。在這個(gè)研究案例中,模型標(biāo)注了臨床上有意義的信息片段。

這對(duì)患者和臨床醫(yī)生意味著什么?

這項(xiàng)研究成果還處于早期階段,而且是基于回顧性數(shù)據(jù)得出的。事實(shí)上,證明機(jī)器學(xué)習(xí)可用于改善醫(yī)療保健這一假設(shè)還有做很多工作要做,本文不過是個(gè)開始。醫(yī)生們正窮于應(yīng)付各種警報(bào)和需求,機(jī)器學(xué)習(xí)模型是否能幫助處理繁瑣的管理任務(wù),讓他們更專注于護(hù)理有需要的患者?我們是否可以幫助患者獲得高質(zhì)量的護(hù)理,無論他們?cè)谀睦飳で笾委??我們期待著與醫(yī)生和患者合作,找出這些問題的答案。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴

原文標(biāo)題:GGAI 前沿 | Google醫(yī)療AI新成果:用深度學(xué)習(xí)分析電子病歷 預(yù)測(cè)患者病情發(fā)展

文章出處:【微信號(hào):ggservicerobot,微信公眾號(hào):高工智能未來】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    如何深度學(xué)習(xí)機(jī)器視覺的應(yīng)用場(chǎng)景

    檢測(cè)應(yīng)用 微細(xì)缺陷識(shí)別:檢測(cè)肉眼難以發(fā)現(xiàn)的微小缺陷和異常 紋理分析:對(duì)材料表面紋理進(jìn)行智能分析和缺陷識(shí)別 3D表面重建:通過深度學(xué)習(xí)
    的頭像 發(fā)表于 11-27 10:19 ?89次閱讀

    基于全局預(yù)測(cè)歷史的gshare分支預(yù)測(cè)器的實(shí)現(xiàn)細(xì)節(jié)

    的地址位數(shù),雖然BHR位數(shù)越多,分支預(yù)測(cè)器的準(zhǔn)確度越高,但正確率提高的代價(jià)是PHT消耗的資源呈指數(shù)形式迅速地增長,因此我們必須在面積與性能之間進(jìn)行權(quán)衡。。最終經(jīng)過對(duì)各類32位RISC-V開源處理器內(nèi)核
    發(fā)表于 10-22 06:50

    【新啟航】深度學(xué)習(xí)在玻璃晶圓 TTV 厚度數(shù)據(jù)智能分析中的應(yīng)用

    。隨著深度學(xué)習(xí)在數(shù)據(jù)處理領(lǐng)域展現(xiàn)出強(qiáng)大能力,將其應(yīng)用于玻璃晶圓 TTV 厚度數(shù)據(jù)智能分析,有助于實(shí)現(xiàn)高精度、高效率的質(zhì)量檢測(cè)與工藝優(yōu)化,為行業(yè)發(fā)展提供新動(dòng)能。
    的頭像 發(fā)表于 10-11 13:32 ?263次閱讀
    【新啟航】<b class='flag-5'>深度</b><b class='flag-5'>學(xué)習(xí)</b>在玻璃晶圓 TTV 厚度數(shù)據(jù)智能<b class='flag-5'>分析</b>中的應(yīng)用

    如何在機(jī)器視覺中部署深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)

    圖 1:基于深度學(xué)習(xí)的目標(biāo)檢測(cè)可定位已訓(xùn)練的目標(biāo)類別,并通過矩形框(邊界框)對(duì)其進(jìn)行標(biāo)識(shí)。 在討論人工智能(AI)或深度學(xué)習(xí)時(shí),經(jīng)常會(huì)出現(xiàn)“
    的頭像 發(fā)表于 09-10 17:38 ?728次閱讀
    如何在機(jī)器視覺中部署<b class='flag-5'>深度</b><b class='flag-5'>學(xué)習(xí)</b>神經(jīng)網(wǎng)絡(luò)

    深度學(xué)習(xí)對(duì)工業(yè)物聯(lián)網(wǎng)有哪些幫助

    、實(shí)施路徑三個(gè)維度展開分析: 一、深度學(xué)習(xí)如何突破工業(yè)物聯(lián)網(wǎng)的技術(shù)瓶頸? 1. 非結(jié)構(gòu)化數(shù)據(jù)處理:解鎖“沉睡數(shù)據(jù)”價(jià)值 傳統(tǒng)困境 :工業(yè)物聯(lián)網(wǎng)中70%以上的數(shù)據(jù)為非結(jié)構(gòu)化數(shù)據(jù)(如設(shè)備振動(dòng)波形、紅外圖像、日志文本),傳統(tǒng)方法難以
    的頭像 發(fā)表于 08-20 14:56 ?806次閱讀

    電磁軌跡預(yù)測(cè)分析系統(tǒng)

    電磁軌跡預(yù)測(cè)分析系統(tǒng)軟件全面解析
    的頭像 發(fā)表于 07-30 16:32 ?402次閱讀
    電磁軌跡<b class='flag-5'>預(yù)測(cè)</b><b class='flag-5'>分析</b>系統(tǒng)

    晶圓切割深度動(dòng)態(tài)補(bǔ)償?shù)闹悄軟Q策模型與 TTV 預(yù)測(cè)控制

    摘要:本文針對(duì)超薄晶圓切割過程中 TTV 均勻性控制難題,研究晶圓切割深度動(dòng)態(tài)補(bǔ)償?shù)闹悄軟Q策模型與 TTV 預(yù)測(cè)控制方法。分析影響切割深度與 TTV 的關(guān)鍵因素,闡述智能決策模型的構(gòu)建
    的頭像 發(fā)表于 07-23 09:54 ?417次閱讀
    晶圓切割<b class='flag-5'>深度</b>動(dòng)態(tài)補(bǔ)償?shù)闹悄軟Q策模型與 TTV <b class='flag-5'>預(yù)測(cè)</b>控制

    RK3128 Android 7.1 進(jìn)入深度休眠流程分析

    RK3128 Android 7.1 進(jìn)入深度休眠流程分析RK3128是瑞芯微電子推出的一款低功耗四核Cortex-A7處理器,運(yùn)行Android 7.1系統(tǒng)時(shí)進(jìn)入深度休眠(Deep
    發(fā)表于 07-22 10:45

    光伏電站智能分析決策的系統(tǒng)化應(yīng)用工具

    數(shù)據(jù)采集傳輸;然后經(jīng)過一定的處理技術(shù),對(duì)數(shù)據(jù)進(jìn)行清洗與存儲(chǔ)、提取復(fù)合特征,并基于機(jī)器學(xué)習(xí)以及深度學(xué)習(xí)算法,進(jìn)行模型建設(shè)協(xié)同
    的頭像 發(fā)表于 07-03 14:56 ?664次閱讀
    光伏電站智能<b class='flag-5'>分析</b>決策的系統(tǒng)化應(yīng)用工具

    存儲(chǔ)示波器的存儲(chǔ)深度對(duì)信號(hào)分析有什么影響?

    存儲(chǔ)深度(Memory Depth)是數(shù)字示波器的核心參數(shù)之一,它直接決定了示波器在單次采集過程中能夠記錄的采樣點(diǎn)數(shù)量。存儲(chǔ)深度對(duì)信號(hào)分析的影響貫穿時(shí)域細(xì)節(jié)捕捉、頻域分析精度、觸發(fā)穩(wěn)定
    發(fā)表于 05-27 14:39

    電磁軌跡預(yù)測(cè)分析系統(tǒng)軟件全面解析

    電磁軌跡預(yù)測(cè)分析系統(tǒng)軟件:深度解析 系統(tǒng)概述 北京華盛恒輝電磁軌跡預(yù)測(cè)分析系統(tǒng)軟件,借助電磁學(xué)原理和先進(jìn)計(jì)算技術(shù),能實(shí)時(shí)
    的頭像 發(fā)表于 04-12 16:10 ?911次閱讀

    樹莓派搞深度學(xué)習(xí)?TensorFlow啟動(dòng)!

    介紹本頁面將指導(dǎo)您在搭載64位Bullseye操作系統(tǒng)的RaspberryPi4上安裝TensorFlow。TensorFlow是一個(gè)專為深度學(xué)習(xí)開發(fā)的大型軟件庫,它消耗大量資源。您可以在
    的頭像 發(fā)表于 03-25 09:33 ?991次閱讀
    <b class='flag-5'>用</b>樹莓派搞<b class='flag-5'>深度</b><b class='flag-5'>學(xué)習(xí)</b>?TensorFlow啟動(dòng)!

    如何排除深度學(xué)習(xí)工作臺(tái)上量化OpenVINO?的特定層?

    無法確定如何排除要在深度學(xué)習(xí)工作臺(tái)上量化OpenVINO?特定層
    發(fā)表于 03-06 07:31

    軍事應(yīng)用中深度學(xué)習(xí)的挑戰(zhàn)與機(jī)遇

    人工智能尤其是深度學(xué)習(xí)技術(shù)的最新進(jìn)展,加速了不同應(yīng)用領(lǐng)域的創(chuàng)新與發(fā)展。深度學(xué)習(xí)技術(shù)的發(fā)展深刻影響了軍事發(fā)展趨勢(shì),導(dǎo)致戰(zhàn)爭形式和模式發(fā)生重大變化。本文將概述
    的頭像 發(fā)表于 02-14 11:15 ?844次閱讀

    BP神經(jīng)網(wǎng)絡(luò)與深度學(xué)習(xí)的關(guān)系

    ),是一種多層前饋神經(jīng)網(wǎng)絡(luò),它通過反向傳播算法進(jìn)行訓(xùn)練。BP神經(jīng)網(wǎng)絡(luò)由輸入層、一個(gè)或多個(gè)隱藏層和輸出層組成,通過逐層遞減的方式調(diào)整網(wǎng)絡(luò)權(quán)重,目的是最小化網(wǎng)絡(luò)的輸出誤差。 二、深度學(xué)習(xí)的定義與發(fā)展
    的頭像 發(fā)表于 02-12 15:15 ?1402次閱讀